Frequency Response Function-Based Learning Control: Analysis and Design for Finite-Time Convergence
Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2023-03, Vol.68 (3), p.1807-1814 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Iterative learning control (ILC) enables substantial performance improvement by using past operational data in combination with approximate plant models. The aim of this article is to develop an ILC framework based on nonparametric frequency response function (FRF) models that requires very limited modeling effort. These FRF models describe the behavior of a system in periodic steady state, yet are employed for the control of arbitrary finite-length tasks. A detailed analysis and design framework is developed to construct noncausal learning filters directly from uncertain FRF models, that achieve ILC convergence for arbitrary tasks. The resulting framework provides a unification between ILC and iterative inversion-based control, where the latter is a learning method specifically developed for periodic tasks. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2022.3159489 |