A Physics-Informed Action Network for Transient Stability Preventive Control

This letter proposes a physics-informed action network (PIAN) for power system transient stability preventive control (TSPC). The network firstly renders deep learning to reduce the TSPC complexity. Unlike common data-driven methods that superficially imitate control experience, TSPC is then analyti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2023-03, Vol.38 (2), p.1-4
Hauptverfasser: Liu, Youbo, Gao, Shuyu, Qiu, Gao, Liu, Tingjian, Ding, Lijie, Liu, Junyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter proposes a physics-informed action network (PIAN) for power system transient stability preventive control (TSPC). The network firstly renders deep learning to reduce the TSPC complexity. Unlike common data-driven methods that superficially imitate control experience, TSPC is then analytically embedded into the proposed PIAN network, so that to enforce the network to learn in-depth physical patterns. The well-learned PIAN enables highly generalized real-time decisions. Comparisons with one model-based and two data-driven baselines on the IEEE 39-bus system and the IEEE 145-bus system highlight that, the proposed method enables highly reliable control decisions, and beats the others in terms of decision efficiency and generalizability.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2022.3233763