Generation of Synthetic Data for Honeypot Systems Using Deep Learning Methods

This paper presents studies intended to analyze the methods for generating synthetic data to fill honeypot systems. To choose the generated data types, the topical target objects in the context of honeypot systems are revealed. The existing methods of generation are investigated. Methods for analyzi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences 2022-12, Vol.56 (8), p.916-926
Hauptverfasser: Danilov, V. D., Ovasapyan, T. D., Ivanov, D. V., Konoplev, A. S., Moskvin, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents studies intended to analyze the methods for generating synthetic data to fill honeypot systems. To choose the generated data types, the topical target objects in the context of honeypot systems are revealed. The existing methods of generation are investigated. Methods for analyzing the quality of generated data in the context of honeypot systems are also analyzed. As a result, the layout of an automated system for generating synthetic data for honeypot systems is developed and the efficiency of its operation is estimated.
ISSN:0146-4116
1558-108X
DOI:10.3103/S014641162208003X