ADAPTIVELY ACCELERATED GMRES FAST FOURIER TRANSFORM METHOD FOR ELECTROMAGNETIC SCATTERING

The problem of electromagnetic scattering by 3D dielectric bodies is formulated in terms of a weak-form volume integral equation. Applying Galerkin's method with rooftop functions as basis and testing functions,the integral equation can be usually solved by Krylov-subspace fast Fourier transfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electromagnetic waves (Cambridge, Mass.) Mass.), 2008, Vol.81, p.303-314
Hauptverfasser: Xin, Yuan Fang, Rui, Ping-Liang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of electromagnetic scattering by 3D dielectric bodies is formulated in terms of a weak-form volume integral equation. Applying Galerkin's method with rooftop functions as basis and testing functions,the integral equation can be usually solved by Krylov-subspace fast Fourier transform (FFT) iterative methods. In this paper,the generalized minimum residual (GMRES)-FFT method is used to solve this integral equation,and several adaptive acceleration techniques are proposed to improve the convergence rate of the GMRES-FFT method. On several electromagnetic scattering problems,the performance of these adaptively accelerated GMRESFFT methods are thoroughly analyzed and compared.
ISSN:1559-8985
1070-4698
1559-8985
DOI:10.2528/PIER08011603