SIGNAL DESCRIPTIONS AND FORMULATIONS FOR LONG RANGE UHF RFID READERS

In this paper, signal descriptions and formulations for the radio frequency (RF) front-end of a passive backscatter radio frequency identification (RFID) reader working at ultra high frequencies (UHF) are discussed in detail, and a set of design considerations aiming to improve the read range are ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electromagnetic waves (Cambridge, Mass.) Mass.), 2007, Vol.71, p.109-127
Hauptverfasser: Fan, Zhiguang, Qiao, Shan, Jiang Tao, Huang-Fu, Ran, Li-Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, signal descriptions and formulations for the radio frequency (RF) front-end of a passive backscatter radio frequency identification (RFID) reader working at ultra high frequencies (UHF) are discussed in detail, and a set of design considerations aiming to improve the read range are outlined. The reader's architecture is proposed and the design details of its RF frond-end are presented. The read range is formulated through calculating the time-averaging power absorbed by the tag and the signal-noise-ratio (SNR) of the demodulation, and accordingly RFID systems can be classified into tag-determining and reader-determining ones. It is concluded that the gain of the reader antenna, the phase noise of the local oscillation (LO) and the receive-transmit isolation coefficient dominate the demodulation output noise of the reader, and consequently the readerdetermining maximum operational distance. A prototype reader working at the frequency of 915MHz was built with off-the-shelf components and was evaluated with a commercial tag in an indoor environment. The measured results show that this RFID system is of tag-determining and has a read range of 8.4 meters, which are in good agreement with the calculated results.
ISSN:1559-8985
1070-4698
1559-8985
DOI:10.2528/PIER07021501