Observed-data DIC for spatial panel data models
In spatial panel data modeling, researchers often need to choose a spatial weights matrix from a pool of candidates, and decide between static and dynamic specifications. We propose observed-data deviance information criteria to resolve these specification problems in a Bayesian setting. The presenc...
Gespeichert in:
Veröffentlicht in: | Empirical economics 2023-03, Vol.64 (3), p.1281-1314 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In spatial panel data modeling, researchers often need to choose a spatial weights matrix from a pool of candidates, and decide between static and dynamic specifications. We propose observed-data deviance information criteria to resolve these specification problems in a Bayesian setting. The presence of high dimensional latent variables (i.e., the individual and time fixed effects) in spatial panel data models invalidates the use of a deviance information criterion (DIC) formulated with the conditional and the complete-data likelihood functions of spatial panel data models. We first show how to analytically integrate out these latent variables from the complete-data likelihood functions to obtain integrated likelihood functions. We then use the integrated likelihood functions to formulate observed-data DIC measures for both static and dynamic spatial panel data models. Our simulation analysis indicates that the observed-data DIC measures perform satisfactorily to resolve specification problems in spatial panel data modeling. We also illustrate the usefulness of the proposed observed-data DIC measures using an application from the literature on spatial modeling of the house price changes in the US. |
---|---|
ISSN: | 0377-7332 1435-8921 |
DOI: | 10.1007/s00181-022-02286-6 |