On Universal Positive Graphs
We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each -axiomatizable class of graphs can be characterized as follows: A graph belongs to if and only if for a given family of finite graphs no graph in i...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2023, Vol.64 (1), p.83-93 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | 1 |
container_start_page | 83 |
container_title | Siberian mathematical journal |
container_volume | 64 |
creator | Kalmurzaev, B. S. Bazhenov, N. A. Alish, D. B. |
description | We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each
-axiomatizable class of graphs
can be characterized as follows: A graph
belongs to
if and only if for a given family of finite graphs
no graph in
is isomorphically embeddable into
.If all graphs in
are weakly connected; then, under additional effectiveness conditions, the corresponding class
has some universal computable numbering and universal positive graph. The effectiveness conditions hold for forests, bipartite graphs, planar graphs, and
-colorable graphs (for a fixed number
). If
is a finite family of the graphs with weakly connected complement then the corresponding class
contains a universal positive graph (in general, a universal computable numbering for
may fail to exist). |
doi_str_mv | 10.1134/S003744662301010X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780437690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780437690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-da9f7e8290ac399f0c108014d0a27006208b4b3594d138c106853dcba911733e3</originalsourceid><addsrcrecordid>eNp1kN1Kw0AQhRdRMFYfwAuh4HV0ZmezP5dStAqFClrwLmySjabUJO62gm_js_hkbojghchcDMP5zhw4jJ0iXCCSuHwAICWElJwA4zztsQQzRanhEvZZMsjpoB-yoxDWEBGQJmFny_brc9U2784Hu5ned6HZxmM697Z_CcfsoLab4E5-9oStbq4fZ7fpYjm_m10t0pJLvU0ra2rlNDdgSzKmhhJBA4oKLFcxh4MuREGZERWSjqLUGVVlYQ2iInI0Yefj3953bzsXtvm62_k2RuZcaRCkpIFI4UiVvgvBuzrvffNq_UeOkA8t5H9aiB4-ekJk22fnfz__b_oG9Gdb6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780437690</pqid></control><display><type>article</type><title>On Universal Positive Graphs</title><source>SpringerNature Journals</source><creator>Kalmurzaev, B. S. ; Bazhenov, N. A. ; Alish, D. B.</creator><creatorcontrib>Kalmurzaev, B. S. ; Bazhenov, N. A. ; Alish, D. B.</creatorcontrib><description>We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each
-axiomatizable class of graphs
can be characterized as follows: A graph
belongs to
if and only if for a given family of finite graphs
no graph in
is isomorphically embeddable into
.If all graphs in
are weakly connected; then, under additional effectiveness conditions, the corresponding class
has some universal computable numbering and universal positive graph. The effectiveness conditions hold for forests, bipartite graphs, planar graphs, and
-colorable graphs (for a fixed number
). If
is a finite family of the graphs with weakly connected complement then the corresponding class
contains a universal positive graph (in general, a universal computable numbering for
may fail to exist).</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S003744662301010X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Effectiveness ; Graphs ; Mathematics ; Mathematics and Statistics</subject><ispartof>Siberian mathematical journal, 2023, Vol.64 (1), p.83-93</ispartof><rights>Pleiades Publishing, Ltd. 2023. Russian Text © The Author(s), 2023, published in Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 1, pp. 98–112.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-da9f7e8290ac399f0c108014d0a27006208b4b3594d138c106853dcba911733e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S003744662301010X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S003744662301010X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kalmurzaev, B. S.</creatorcontrib><creatorcontrib>Bazhenov, N. A.</creatorcontrib><creatorcontrib>Alish, D. B.</creatorcontrib><title>On Universal Positive Graphs</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each
-axiomatizable class of graphs
can be characterized as follows: A graph
belongs to
if and only if for a given family of finite graphs
no graph in
is isomorphically embeddable into
.If all graphs in
are weakly connected; then, under additional effectiveness conditions, the corresponding class
has some universal computable numbering and universal positive graph. The effectiveness conditions hold for forests, bipartite graphs, planar graphs, and
-colorable graphs (for a fixed number
). If
is a finite family of the graphs with weakly connected complement then the corresponding class
contains a universal positive graph (in general, a universal computable numbering for
may fail to exist).</description><subject>Effectiveness</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kN1Kw0AQhRdRMFYfwAuh4HV0ZmezP5dStAqFClrwLmySjabUJO62gm_js_hkbojghchcDMP5zhw4jJ0iXCCSuHwAICWElJwA4zztsQQzRanhEvZZMsjpoB-yoxDWEBGQJmFny_brc9U2784Hu5ned6HZxmM697Z_CcfsoLab4E5-9oStbq4fZ7fpYjm_m10t0pJLvU0ra2rlNDdgSzKmhhJBA4oKLFcxh4MuREGZERWSjqLUGVVlYQ2iInI0Yefj3953bzsXtvm62_k2RuZcaRCkpIFI4UiVvgvBuzrvffNq_UeOkA8t5H9aiB4-ekJk22fnfz__b_oG9Gdb6Q</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kalmurzaev, B. S.</creator><creator>Bazhenov, N. A.</creator><creator>Alish, D. B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>On Universal Positive Graphs</title><author>Kalmurzaev, B. S. ; Bazhenov, N. A. ; Alish, D. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-da9f7e8290ac399f0c108014d0a27006208b4b3594d138c106853dcba911733e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Effectiveness</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalmurzaev, B. S.</creatorcontrib><creatorcontrib>Bazhenov, N. A.</creatorcontrib><creatorcontrib>Alish, D. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalmurzaev, B. S.</au><au>Bazhenov, N. A.</au><au>Alish, D. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Universal Positive Graphs</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2023</date><risdate>2023</risdate><volume>64</volume><issue>1</issue><spage>83</spage><epage>93</epage><pages>83-93</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each
-axiomatizable class of graphs
can be characterized as follows: A graph
belongs to
if and only if for a given family of finite graphs
no graph in
is isomorphically embeddable into
.If all graphs in
are weakly connected; then, under additional effectiveness conditions, the corresponding class
has some universal computable numbering and universal positive graph. The effectiveness conditions hold for forests, bipartite graphs, planar graphs, and
-colorable graphs (for a fixed number
). If
is a finite family of the graphs with weakly connected complement then the corresponding class
contains a universal positive graph (in general, a universal computable numbering for
may fail to exist).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S003744662301010X</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2023, Vol.64 (1), p.83-93 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_2780437690 |
source | SpringerNature Journals |
subjects | Effectiveness Graphs Mathematics Mathematics and Statistics |
title | On Universal Positive Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%C2%A0Universal%20Positive%20Graphs&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Kalmurzaev,%20B.%20S.&rft.date=2023&rft.volume=64&rft.issue=1&rft.spage=83&rft.epage=93&rft.pages=83-93&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S003744662301010X&rft_dat=%3Cproquest_cross%3E2780437690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780437690&rft_id=info:pmid/&rfr_iscdi=true |