On Universal Positive Graphs

We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each -axiomatizable class of graphs can be characterized as follows: A graph  belongs to  if and only if for a given family of finite graphs  no graph in  i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2023, Vol.64 (1), p.83-93
Hauptverfasser: Kalmurzaev, B. S., Bazhenov, N. A., Alish, D. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 1
container_start_page 83
container_title Siberian mathematical journal
container_volume 64
creator Kalmurzaev, B. S.
Bazhenov, N. A.
Alish, D. B.
description We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each -axiomatizable class of graphs can be characterized as follows: A graph  belongs to  if and only if for a given family of finite graphs  no graph in  is isomorphically embeddable into  .If all graphs in  are weakly connected; then, under additional effectiveness conditions, the corresponding class has some universal computable numbering and universal positive graph. The effectiveness conditions hold for forests, bipartite graphs, planar graphs, and -colorable graphs (for a fixed number  ). If  is a finite family of the graphs with weakly connected complement then the corresponding class  contains a universal positive graph (in general, a universal computable numbering for  may fail to exist).
doi_str_mv 10.1134/S003744662301010X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780437690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780437690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-da9f7e8290ac399f0c108014d0a27006208b4b3594d138c106853dcba911733e3</originalsourceid><addsrcrecordid>eNp1kN1Kw0AQhRdRMFYfwAuh4HV0ZmezP5dStAqFClrwLmySjabUJO62gm_js_hkbojghchcDMP5zhw4jJ0iXCCSuHwAICWElJwA4zztsQQzRanhEvZZMsjpoB-yoxDWEBGQJmFny_brc9U2784Hu5ned6HZxmM697Z_CcfsoLab4E5-9oStbq4fZ7fpYjm_m10t0pJLvU0ra2rlNDdgSzKmhhJBA4oKLFcxh4MuREGZERWSjqLUGVVlYQ2iInI0Yefj3953bzsXtvm62_k2RuZcaRCkpIFI4UiVvgvBuzrvffNq_UeOkA8t5H9aiB4-ekJk22fnfz__b_oG9Gdb6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780437690</pqid></control><display><type>article</type><title>On Universal Positive Graphs</title><source>SpringerNature Journals</source><creator>Kalmurzaev, B. S. ; Bazhenov, N. A. ; Alish, D. B.</creator><creatorcontrib>Kalmurzaev, B. S. ; Bazhenov, N. A. ; Alish, D. B.</creatorcontrib><description>We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each -axiomatizable class of graphs can be characterized as follows: A graph  belongs to  if and only if for a given family of finite graphs  no graph in  is isomorphically embeddable into  .If all graphs in  are weakly connected; then, under additional effectiveness conditions, the corresponding class has some universal computable numbering and universal positive graph. The effectiveness conditions hold for forests, bipartite graphs, planar graphs, and -colorable graphs (for a fixed number  ). If  is a finite family of the graphs with weakly connected complement then the corresponding class  contains a universal positive graph (in general, a universal computable numbering for  may fail to exist).</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S003744662301010X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Effectiveness ; Graphs ; Mathematics ; Mathematics and Statistics</subject><ispartof>Siberian mathematical journal, 2023, Vol.64 (1), p.83-93</ispartof><rights>Pleiades Publishing, Ltd. 2023. Russian Text © The Author(s), 2023, published in Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 1, pp. 98–112.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-da9f7e8290ac399f0c108014d0a27006208b4b3594d138c106853dcba911733e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S003744662301010X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S003744662301010X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kalmurzaev, B. S.</creatorcontrib><creatorcontrib>Bazhenov, N. A.</creatorcontrib><creatorcontrib>Alish, D. B.</creatorcontrib><title>On Universal Positive Graphs</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each -axiomatizable class of graphs can be characterized as follows: A graph  belongs to  if and only if for a given family of finite graphs  no graph in  is isomorphically embeddable into  .If all graphs in  are weakly connected; then, under additional effectiveness conditions, the corresponding class has some universal computable numbering and universal positive graph. The effectiveness conditions hold for forests, bipartite graphs, planar graphs, and -colorable graphs (for a fixed number  ). If  is a finite family of the graphs with weakly connected complement then the corresponding class  contains a universal positive graph (in general, a universal computable numbering for  may fail to exist).</description><subject>Effectiveness</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kN1Kw0AQhRdRMFYfwAuh4HV0ZmezP5dStAqFClrwLmySjabUJO62gm_js_hkbojghchcDMP5zhw4jJ0iXCCSuHwAICWElJwA4zztsQQzRanhEvZZMsjpoB-yoxDWEBGQJmFny_brc9U2784Hu5ned6HZxmM697Z_CcfsoLab4E5-9oStbq4fZ7fpYjm_m10t0pJLvU0ra2rlNDdgSzKmhhJBA4oKLFcxh4MuREGZERWSjqLUGVVlYQ2iInI0Yefj3953bzsXtvm62_k2RuZcaRCkpIFI4UiVvgvBuzrvffNq_UeOkA8t5H9aiB4-ekJk22fnfz__b_oG9Gdb6Q</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kalmurzaev, B. S.</creator><creator>Bazhenov, N. A.</creator><creator>Alish, D. B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>On Universal Positive Graphs</title><author>Kalmurzaev, B. S. ; Bazhenov, N. A. ; Alish, D. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-da9f7e8290ac399f0c108014d0a27006208b4b3594d138c106853dcba911733e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Effectiveness</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalmurzaev, B. S.</creatorcontrib><creatorcontrib>Bazhenov, N. A.</creatorcontrib><creatorcontrib>Alish, D. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalmurzaev, B. S.</au><au>Bazhenov, N. A.</au><au>Alish, D. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Universal Positive Graphs</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2023</date><risdate>2023</risdate><volume>64</volume><issue>1</issue><spage>83</spage><epage>93</epage><pages>83-93</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each -axiomatizable class of graphs can be characterized as follows: A graph  belongs to  if and only if for a given family of finite graphs  no graph in  is isomorphically embeddable into  .If all graphs in  are weakly connected; then, under additional effectiveness conditions, the corresponding class has some universal computable numbering and universal positive graph. The effectiveness conditions hold for forests, bipartite graphs, planar graphs, and -colorable graphs (for a fixed number  ). If  is a finite family of the graphs with weakly connected complement then the corresponding class  contains a universal positive graph (in general, a universal computable numbering for  may fail to exist).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S003744662301010X</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2023, Vol.64 (1), p.83-93
issn 0037-4466
1573-9260
language eng
recordid cdi_proquest_journals_2780437690
source SpringerNature Journals
subjects Effectiveness
Graphs
Mathematics
Mathematics and Statistics
title On Universal Positive Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%C2%A0Universal%20Positive%20Graphs&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Kalmurzaev,%20B.%20S.&rft.date=2023&rft.volume=64&rft.issue=1&rft.spage=83&rft.epage=93&rft.pages=83-93&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S003744662301010X&rft_dat=%3Cproquest_cross%3E2780437690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780437690&rft_id=info:pmid/&rfr_iscdi=true