On Universal Positive Graphs

We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each -axiomatizable class of graphs can be characterized as follows: A graph  belongs to  if and only if for a given family of finite graphs  no graph in  i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2023, Vol.64 (1), p.83-93
Hauptverfasser: Kalmurzaev, B. S., Bazhenov, N. A., Alish, D. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the existence of the universal computable numberings and the universal graphs for various classes of positive graphs. It is known that each -axiomatizable class of graphs can be characterized as follows: A graph  belongs to  if and only if for a given family of finite graphs  no graph in  is isomorphically embeddable into  .If all graphs in  are weakly connected; then, under additional effectiveness conditions, the corresponding class has some universal computable numbering and universal positive graph. The effectiveness conditions hold for forests, bipartite graphs, planar graphs, and -colorable graphs (for a fixed number  ). If  is a finite family of the graphs with weakly connected complement then the corresponding class  contains a universal positive graph (in general, a universal computable numbering for  may fail to exist).
ISSN:0037-4466
1573-9260
DOI:10.1134/S003744662301010X