Integers that are sums of two rational sixth powers
We prove that $164\, 634\, 913$ is the smallest positive integer that is a sum of two rational sixth powers, but not a sum of two integer sixth powers. If $C_{k}$ is the curve $x^{6} + y^{6} = k$ , we use the existence of morphisms from $C_{k}$ to elliptic curves, together with the Mordell–Weil siev...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2023-03, Vol.66 (1), p.166-177 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that
$164\, 634\, 913$
is the smallest positive integer that is a sum of two rational sixth powers, but not a sum of two integer sixth powers. If
$C_{k}$
is the curve
$x^{6} + y^{6} = k$
, we use the existence of morphisms from
$C_{k}$
to elliptic curves, together with the Mordell–Weil sieve, to rule out the existence of rational points on
$C_{k}$
for various k. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/S0008439522000157 |