Integers that are sums of two rational sixth powers

We prove that $164\, 634\, 913$ is the smallest positive integer that is a sum of two rational sixth powers, but not a sum of two integer sixth powers. If $C_{k}$ is the curve $x^{6} + y^{6} = k$ , we use the existence of morphisms from $C_{k}$ to elliptic curves, together with the Mordell–Weil siev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2023-03, Vol.66 (1), p.166-177
Hauptverfasser: Newton, Alexis, Rouse, Jeremy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that $164\, 634\, 913$ is the smallest positive integer that is a sum of two rational sixth powers, but not a sum of two integer sixth powers. If $C_{k}$ is the curve $x^{6} + y^{6} = k$ , we use the existence of morphisms from $C_{k}$ to elliptic curves, together with the Mordell–Weil sieve, to rule out the existence of rational points on $C_{k}$ for various k.
ISSN:0008-4395
1496-4287
DOI:10.4153/S0008439522000157