FHGSO: Flower Henry gas solubility optimization integrated deep convolutional neural network for image classification

Image classification becomes a popular research area in computer vision due to the increasing development of image indexing and retrieval tasks. This paper proposes a Flower Henry Gas Solubility Optimization-based Deep Convolution Neural Network (FHGSO-based Deep CNN) for image classification. Initi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023-03, Vol.53 (6), p.7278-7297
Hauptverfasser: Deepa, S. N., Rasi, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Image classification becomes a popular research area in computer vision due to the increasing development of image indexing and retrieval tasks. This paper proposes a Flower Henry Gas Solubility Optimization-based Deep Convolution Neural Network (FHGSO-based Deep CNN) for image classification. Initially, the input image is pre-processed through the median filter. Then, the segmentation is performed using the Improved Invasive Weed Flower Pollination Optimization (IIWFPO)-based SegNet. IIWFPO is the integration of the Improved invasive weed optimization (IWO) algorithm and Flower Pollination Algorithm (FPA). Finally, image classification is performed using FHGSO-based Deep CNN. The FHGSO algorithm is developed by integrating the FPA and Henry Gas Solubility Optimization (HGSO) algorithm. The performance of the proposed method is analyzed using the Stanford background dataset and compared with the other image classification methods. The proposed model obtained the value of 0.938, 0.955, and 0.907 for testing accuracy, sensitivity, and specificity, respectively.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-022-03834-4