Lagrangian 3-form structure for the Darboux system and the KP hierarchy
A Lagrangian multiform structure is established for a generalisation of the Darboux system describing orthogonal curvilinear coordinate systems. It has been shown in the past that this system of coupled PDEs is in fact an encoding of the entire Kadomtsev–Petviashvili (KP) hierarchy in terms so-calle...
Gespeichert in:
Veröffentlicht in: | Letters in mathematical physics 2023-02, Vol.113 (1), Article 27 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Lagrangian multiform structure is established for a generalisation of the Darboux system describing orthogonal curvilinear coordinate systems. It has been shown in the past that this system of coupled PDEs is in fact an encoding of the entire Kadomtsev–Petviashvili (KP) hierarchy in terms so-called Miwa variables. Thus, in providing a Lagrangian description of this multidimensionally consistent system amounts to a new Lagrangian 3-form structure for the continuous KP system. A generalisation to the matrix (also known as non-Abelian) KP system is discussed. |
---|---|
ISSN: | 0377-9017 1573-0530 |
DOI: | 10.1007/s11005-023-01641-7 |