Relaxed-inertial proximal point type algorithms for quasiconvex minimization
We propose a relaxed-inertial proximal point type algorithm for solving optimization problems consisting in minimizing strongly quasiconvex functions whose variables lie in finitely dimensional linear subspaces. A relaxed version of the method where the constraint set is only closed and convex is al...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2023-03, Vol.85 (3), p.615-635 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a relaxed-inertial proximal point type algorithm for solving optimization problems consisting in minimizing strongly quasiconvex functions whose variables lie in finitely dimensional linear subspaces. A relaxed version of the method where the constraint set is only closed and convex is also discussed, and so is the case of a quasiconvex objective function. Numerical experiments illustrate the theoretical results. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-022-01226-z |