Sparse Grid Approximation in Weighted Wiener Spaces

We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grid methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scaling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2023-04, Vol.29 (2), Article 19
Hauptverfasser: Kolomoitsev, Yurii, Lomako, Tetiana, Tikhonov, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study approximation properties of multivariate periodic functions from weighted Wiener spaces by sparse grid methods constructed with the help of quasi-interpolation operators. The class of such operators includes classical interpolation and sampling operators, Kantorovich-type operators, scaling expansions associated with wavelet constructions, and others. We obtain the rate of convergence of the corresponding sparse grid methods in weighted Wiener norms as well as analogues of the Littlewood–Paley-type characterizations in terms of families of quasi-interpolation operators.
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-023-09994-2