Empirical Relationships for Prediction of Mechanical Properties of High-Strength Concrete
An experimental study was carried out to develop empirical models for predicting the mechanical properties of high-strength concrete (HSC), incorporating the joint effects of silica fume, coarse aggregates type, water-to-cementitious materials ratio (W/CM), and curing time. A total of 45 HSC mixing...
Gespeichert in:
Veröffentlicht in: | Iranian journal of science and technology. Transactions of civil engineering 2023-02, Vol.47 (1), p.315-332 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An experimental study was carried out to develop empirical models for predicting the mechanical properties of high-strength concrete (HSC), incorporating the joint effects of silica fume, coarse aggregates type, water-to-cementitious materials ratio (W/CM), and curing time. A total of 45 HSC mixing designs containing five levels of silica fume (0%, 5%, 10%, 15%, and 20% of cementitious material), three W/CM (0.4, 0.3, and 0.24), and three coarse aggregate types (calcareous, andesite, and quartzite) were made. The results revealed that in HSC with quartzite aggregate at a W/CM of 0.24 and 15% silica fume, the highest tensile, flexural, and compressive strengths were obtained as 143 MPa, 12 MPa, and 8 MPa, respectively. The highest modulus of elasticity was recorded at a W/CM of 0.24 and 10% silica fume. Multivariate regression analysis was used to predict the mechanical properties of the HSC after incorporating the effects of W/CM, curing time, percentage of silica fume replacement, and aggregate type. The models were verified with independent experiments and their credibility was proven at an error of less than 10%. |
---|---|
ISSN: | 2228-6160 2364-1843 |
DOI: | 10.1007/s40996-022-01023-4 |