Spreading of Impacting Water Droplet on Surface with Fixed Microstructure and Different Wetting from Superhydrophilicity to Superhydrophobicity

The spreading of the water droplets falling on surfaces with a contact angle from 0 to 160° was investigated in this work. Superhydrophilicity of the surface is achieved by laser treatment, and hydrophobization is then achieved by applying a fluoropolymer coating of different thicknesses. The chosen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2023-02, Vol.15 (4), p.719
Hauptverfasser: Starinskiy, Sergey, Starinskaya, Elena, Miskiv, Nikolay, Rodionov, Alexey, Ronshin, Fedor, Safonov, Alexey, Lei, Ming-Kai, Terekhov, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spreading of the water droplets falling on surfaces with a contact angle from 0 to 160° was investigated in this work. Superhydrophilicity of the surface is achieved by laser treatment, and hydrophobization is then achieved by applying a fluoropolymer coating of different thicknesses. The chosen approach makes it possible to obtain surfaces with different wettability, but with the same morphology. The parameter t* corresponding to the time when the capillary wave reaches the droplet apex is established. It is shown that for earlier time moments, the droplet height change does not depend on the type of used substrate. A comparison with the data of other authors is made and it is shown that the motion of the contact line on the surface weakly depends on the type of the used structure if its characteristic size is less than 10 μm.
ISSN:2073-4441
2073-4441
DOI:10.3390/w15040719