Predicting Influent and Effluent Quality Parameters for a UASB-Based Wastewater Treatment Plant in Asia Covering Data Variations during COVID-19: A Machine Learning Approach

A region’s population growth inevitably results in higher water consumption. This persistent rise in water use increases the region’s wastewater production. Consequently, due to this increase in wastewater (influent), Wastewater Treatment Plants (WWTPs) are required to run effectively in order to ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2023-02, Vol.15 (4), p.710
Hauptverfasser: Yadav, Parul, Chandra, Manik, Fatima, Nishat, Sarwar, Saqib, Chaudhary, Aditya, Saurabh, Kumar, Yadav, Brijesh Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A region’s population growth inevitably results in higher water consumption. This persistent rise in water use increases the region’s wastewater production. Consequently, due to this increase in wastewater (influent), Wastewater Treatment Plants (WWTPs) are required to run effectively in order to handle the huge demand for treated/processed water (effluent). Knowing in advance the influent and effluent parameters increases the operational efficiency and enables cost-effective utilization of diverse resources at wastewater treatment plants. This paper is based on a prediction/forecasting of an influent quality parameter, namely total MLD, as well as effluent quality parameters, namely MPN, BOD, DO, COD and pH for the real-time data collected pre-, during and post-COVID-19 at the Bharwara WWTP in Lucknow, India. It is the largest UASB-based wastewater treatment facility in Uttar Pradesh and the second largest in Asia. In this paper, we propose a novel model namely, wPred comprising extensions of SARIMA with seasonal order and ANN-based ML models to estimate the influent and effluent quality parameters, respectively, and compare it with the existing machine learning models. The lowest sMAPE error for the influent parameters using wPred is 2.59%. The findings of the paper show a strong correlation (R-value), up to 0.99, between the effluent parameters actually measured and predicted. As a result, the model designed in this paper has an acceptable level of accuracy and generalizability which efficiently predicts/forecasts the performance of Bharwara WWTP.
ISSN:2073-4441
2073-4441
DOI:10.3390/w15040710