Study on Thermal Degradation Processes of Polyethylene Terephthalate Microplastics Using the Kinetics and Artificial Neural Networks Models
Because of its slow rate of disintegration, plastic debris has steadily risen over time and contributed to a host of environmental issues. Recycling the world’s increasing debris has taken on critical importance. Pyrolysis is one of the most practical techniques for recycling plastic because of its...
Gespeichert in:
Veröffentlicht in: | Processes 2023-02, Vol.11 (2), p.496 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Because of its slow rate of disintegration, plastic debris has steadily risen over time and contributed to a host of environmental issues. Recycling the world’s increasing debris has taken on critical importance. Pyrolysis is one of the most practical techniques for recycling plastic because of its intrinsic qualities and environmental friendliness. For scale-up and reactor design, an understanding of the degradation process is essential. Using one model-free kinetic approach (Friedman) and two model-fitting kinetic methods (Arrhenius and Coats-Redfern), the thermal degradation of Polyethylene Terephthalate (PET) microplastics at heating rates of 10, 20, and 30 °C/min was examined in this work. Additionally, a powerful artificial neural network (ANN) model was created to forecast the heat deterioration of PET MPs. At various heating rates, the TG and DTG thermograms from the PET MPs degradation revealed the same patterns and trends. This showed that the heating rates do not impact the decomposition processes. The Friedman model showed activation energy values ranging from 3.31 to 8.79 kJ/mol. The average activation energy value was 1278.88 kJ/mol from the Arrhenius model, while, from the Coats-Redfern model, the average was 1.05 × 104 kJ/mol. The thermodynamics of the degradation process of the PET MPs by thermal treatment were all non-spontaneous and endergonic, and energy was absorbed for the degradation. It was discovered that an ANN, with a two-layer hidden architecture, was the most effective network for predicting the output variable (mass loss%) with a regression coefficient value of (0.951–1.0). |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr11020496 |