Assessing Carbon Reduction Potential of Rooftop PV in China through Remote Sensing Data-Driven Simulations

Developing rooftop photovoltaic (PV) has become an important initiative for achieving carbon neutrality in China, but the carbon reduction potential assessment has not properly considered the spatial and temporal variability of PV generation and the curtailment in electricity dispatch. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-02, Vol.15 (4), p.3380
Hauptverfasser: Jiang, Hou, Lu, Ning, Wang, Xuecheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing rooftop photovoltaic (PV) has become an important initiative for achieving carbon neutrality in China, but the carbon reduction potential assessment has not properly considered the spatial and temporal variability of PV generation and the curtailment in electricity dispatch. In this study, we propose a technical framework to fill the gap in assessing carbon reduction potential through remote sensing data-driven simulations. The spatio-temporal variations in rooftop PV generations were simulated on an hourly basis, and a dispatch analysis was then performed in combination with hourly load profiles to quantify the PV curtailment in different scenarios. Our results showed that the total rooftop PV potential in China reached 6.5 PWh yr−1, mainly concentrated in the eastern region where PV generation showed high variability. The carbon reduction from 100% flexible grids with 12 h of storage capacity is close to the theoretical maximum, while without storage, the potential may be halved. To maximize the carbon reduction potential, rooftop PV development should consider grid characteristics and regional differences. This study has important implications for the development of rooftop PV and the design of carbon-neutral pathways based on it.
ISSN:2071-1050
2071-1050
DOI:10.3390/su15043380