The fractal uncertainty principle via Dolgopyat's method in higher dimensions

We prove a fractal uncertainty principle with exponent \(\frac{d}{2} - \delta + \varepsilon\), \(\varepsilon > 0\), for Ahlfors--David regular subsets of \(\mathbb R^d\) with dimension \(\delta\) which satisfy a suitable "nonorthogonality condition". This generalizes the application of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Backus, Aidan, Leng, James, Zhongkai Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a fractal uncertainty principle with exponent \(\frac{d}{2} - \delta + \varepsilon\), \(\varepsilon > 0\), for Ahlfors--David regular subsets of \(\mathbb R^d\) with dimension \(\delta\) which satisfy a suitable "nonorthogonality condition". This generalizes the application of Dolgopyat's method by Dyatlov--Jin (arXiv:1702.03619) to prove the same result in the special case \(d = 1\). As a corollary, we get a quantitative spectral gap for the Laplacian on convex cocompact hyperbolic manifolds of arbitrary dimension with Zariski dense fundamental groups.
ISSN:2331-8422