Study on Sintering Behavior of Reaction-Cured Glass Coating

High-emissivity coatings constitute an essential component of reusable thermal protection systems, determining the success or failure of hypersonic spacecraft. Reaction-cured glass coating is the basis for all current high-emissivity coatings, and the study of its sintering behavior is of great scie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2023-02, Vol.13 (2), p.463
Hauptverfasser: Li, Mingwei, Sun, Yulei, Zeng, Gang, Li, Wenhao, Zhong, Yesheng, Shi, Liping, Wang, Rongguo, He, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 463
container_title Coatings (Basel)
container_volume 13
creator Li, Mingwei
Sun, Yulei
Zeng, Gang
Li, Wenhao
Zhong, Yesheng
Shi, Liping
Wang, Rongguo
He, Xiaodong
description High-emissivity coatings constitute an essential component of reusable thermal protection systems, determining the success or failure of hypersonic spacecraft. Reaction-cured glass coating is the basis for all current high-emissivity coatings, and the study of its sintering behavior is of great scientific significance for the development and performance enhancement of the coating. Microstructures and phase compositions of the samples before and after the sintering process were determined using SEM, XRD, and EDS. The sintering temperature, inserting temperature, and heating rate were systematically investigated. The results show that the effects of the sintering temperature, inserting temperature, and heating rate on the coating occur in decreasing order. The optimum condition for coating sintering in this study is an insertion temperature of 1100 °C, a heating rate of 10 °C/min, and a sintering temperature of 1200 °C, and a crack-free and containing SiB4 borosilicate glass coating was successfully prepared.
doi_str_mv 10.3390/coatings13020463
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2779527113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743012514</galeid><sourcerecordid>A743012514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-985e1897f72b738db13b7b64a3552092bb561d009a633a382c3e4d13c443c5dd3</originalsourceid><addsrcrecordid>eNpdUM9LwzAUDqLgmLt7LHjuTPKSpsHTLDqFgeD0XNIknRldM5NW2H9vpB7E9w7v8fh-PD6ErgleAkh8q70aXL-LBDDFrIAzNKNYyLxghJ7_2S_RIsY9TiUJlETO0N12GM0p8322df1gQ1LJ7u2H-nI-ZL7NXq3Sg_N9Xo3BmmzdqRizarK7Qhet6qJd_M45en98eKue8s3L-rlabXINmA-5LLklpRStoI2A0jQEGtEUTAHnFEvaNLwgJr2kCgAFJdVgmSGgGQPNjYE5upl0j8F_jjYO9d6PoU-WNRVCcioIgYRaTqid6mzt-tYPQenUxh6c9r1tXbqvBANMKCcsEfBE0MHHGGxbH4M7qHCqCa5_Yq3_xwrfHvpp7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779527113</pqid></control><display><type>article</type><title>Study on Sintering Behavior of Reaction-Cured Glass Coating</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Mingwei ; Sun, Yulei ; Zeng, Gang ; Li, Wenhao ; Zhong, Yesheng ; Shi, Liping ; Wang, Rongguo ; He, Xiaodong</creator><creatorcontrib>Li, Mingwei ; Sun, Yulei ; Zeng, Gang ; Li, Wenhao ; Zhong, Yesheng ; Shi, Liping ; Wang, Rongguo ; He, Xiaodong</creatorcontrib><description>High-emissivity coatings constitute an essential component of reusable thermal protection systems, determining the success or failure of hypersonic spacecraft. Reaction-cured glass coating is the basis for all current high-emissivity coatings, and the study of its sintering behavior is of great scientific significance for the development and performance enhancement of the coating. Microstructures and phase compositions of the samples before and after the sintering process were determined using SEM, XRD, and EDS. The sintering temperature, inserting temperature, and heating rate were systematically investigated. The results show that the effects of the sintering temperature, inserting temperature, and heating rate on the coating occur in decreasing order. The optimum condition for coating sintering in this study is an insertion temperature of 1100 °C, a heating rate of 10 °C/min, and a sintering temperature of 1200 °C, and a crack-free and containing SiB4 borosilicate glass coating was successfully prepared.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings13020463</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Borosilicate glass ; Coatings ; Electronic equipment and supplies ; Emissivity ; Glass coatings ; Heat ; Heating rate ; Morphology ; Phase composition ; Radiation ; Reusable spacecraft ; Sintering ; Spectrum analysis ; Thermal protection</subject><ispartof>Coatings (Basel), 2023-02, Vol.13 (2), p.463</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-985e1897f72b738db13b7b64a3552092bb561d009a633a382c3e4d13c443c5dd3</cites><orcidid>0000-0003-1151-9302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Mingwei</creatorcontrib><creatorcontrib>Sun, Yulei</creatorcontrib><creatorcontrib>Zeng, Gang</creatorcontrib><creatorcontrib>Li, Wenhao</creatorcontrib><creatorcontrib>Zhong, Yesheng</creatorcontrib><creatorcontrib>Shi, Liping</creatorcontrib><creatorcontrib>Wang, Rongguo</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><title>Study on Sintering Behavior of Reaction-Cured Glass Coating</title><title>Coatings (Basel)</title><description>High-emissivity coatings constitute an essential component of reusable thermal protection systems, determining the success or failure of hypersonic spacecraft. Reaction-cured glass coating is the basis for all current high-emissivity coatings, and the study of its sintering behavior is of great scientific significance for the development and performance enhancement of the coating. Microstructures and phase compositions of the samples before and after the sintering process were determined using SEM, XRD, and EDS. The sintering temperature, inserting temperature, and heating rate were systematically investigated. The results show that the effects of the sintering temperature, inserting temperature, and heating rate on the coating occur in decreasing order. The optimum condition for coating sintering in this study is an insertion temperature of 1100 °C, a heating rate of 10 °C/min, and a sintering temperature of 1200 °C, and a crack-free and containing SiB4 borosilicate glass coating was successfully prepared.</description><subject>Borosilicate glass</subject><subject>Coatings</subject><subject>Electronic equipment and supplies</subject><subject>Emissivity</subject><subject>Glass coatings</subject><subject>Heat</subject><subject>Heating rate</subject><subject>Morphology</subject><subject>Phase composition</subject><subject>Radiation</subject><subject>Reusable spacecraft</subject><subject>Sintering</subject><subject>Spectrum analysis</subject><subject>Thermal protection</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUM9LwzAUDqLgmLt7LHjuTPKSpsHTLDqFgeD0XNIknRldM5NW2H9vpB7E9w7v8fh-PD6ErgleAkh8q70aXL-LBDDFrIAzNKNYyLxghJ7_2S_RIsY9TiUJlETO0N12GM0p8322df1gQ1LJ7u2H-nI-ZL7NXq3Sg_N9Xo3BmmzdqRizarK7Qhet6qJd_M45en98eKue8s3L-rlabXINmA-5LLklpRStoI2A0jQEGtEUTAHnFEvaNLwgJr2kCgAFJdVgmSGgGQPNjYE5upl0j8F_jjYO9d6PoU-WNRVCcioIgYRaTqid6mzt-tYPQenUxh6c9r1tXbqvBANMKCcsEfBE0MHHGGxbH4M7qHCqCa5_Yq3_xwrfHvpp7w</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Li, Mingwei</creator><creator>Sun, Yulei</creator><creator>Zeng, Gang</creator><creator>Li, Wenhao</creator><creator>Zhong, Yesheng</creator><creator>Shi, Liping</creator><creator>Wang, Rongguo</creator><creator>He, Xiaodong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1151-9302</orcidid></search><sort><creationdate>20230201</creationdate><title>Study on Sintering Behavior of Reaction-Cured Glass Coating</title><author>Li, Mingwei ; Sun, Yulei ; Zeng, Gang ; Li, Wenhao ; Zhong, Yesheng ; Shi, Liping ; Wang, Rongguo ; He, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-985e1897f72b738db13b7b64a3552092bb561d009a633a382c3e4d13c443c5dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Borosilicate glass</topic><topic>Coatings</topic><topic>Electronic equipment and supplies</topic><topic>Emissivity</topic><topic>Glass coatings</topic><topic>Heat</topic><topic>Heating rate</topic><topic>Morphology</topic><topic>Phase composition</topic><topic>Radiation</topic><topic>Reusable spacecraft</topic><topic>Sintering</topic><topic>Spectrum analysis</topic><topic>Thermal protection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mingwei</creatorcontrib><creatorcontrib>Sun, Yulei</creatorcontrib><creatorcontrib>Zeng, Gang</creatorcontrib><creatorcontrib>Li, Wenhao</creatorcontrib><creatorcontrib>Zhong, Yesheng</creatorcontrib><creatorcontrib>Shi, Liping</creatorcontrib><creatorcontrib>Wang, Rongguo</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mingwei</au><au>Sun, Yulei</au><au>Zeng, Gang</au><au>Li, Wenhao</au><au>Zhong, Yesheng</au><au>Shi, Liping</au><au>Wang, Rongguo</au><au>He, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Sintering Behavior of Reaction-Cured Glass Coating</atitle><jtitle>Coatings (Basel)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>13</volume><issue>2</issue><spage>463</spage><pages>463-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>High-emissivity coatings constitute an essential component of reusable thermal protection systems, determining the success or failure of hypersonic spacecraft. Reaction-cured glass coating is the basis for all current high-emissivity coatings, and the study of its sintering behavior is of great scientific significance for the development and performance enhancement of the coating. Microstructures and phase compositions of the samples before and after the sintering process were determined using SEM, XRD, and EDS. The sintering temperature, inserting temperature, and heating rate were systematically investigated. The results show that the effects of the sintering temperature, inserting temperature, and heating rate on the coating occur in decreasing order. The optimum condition for coating sintering in this study is an insertion temperature of 1100 °C, a heating rate of 10 °C/min, and a sintering temperature of 1200 °C, and a crack-free and containing SiB4 borosilicate glass coating was successfully prepared.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings13020463</doi><orcidid>https://orcid.org/0000-0003-1151-9302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2023-02, Vol.13 (2), p.463
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2779527113
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Borosilicate glass
Coatings
Electronic equipment and supplies
Emissivity
Glass coatings
Heat
Heating rate
Morphology
Phase composition
Radiation
Reusable spacecraft
Sintering
Spectrum analysis
Thermal protection
title Study on Sintering Behavior of Reaction-Cured Glass Coating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Sintering%20Behavior%20of%20Reaction-Cured%20Glass%20Coating&rft.jtitle=Coatings%20(Basel)&rft.au=Li,%20Mingwei&rft.date=2023-02-01&rft.volume=13&rft.issue=2&rft.spage=463&rft.pages=463-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings13020463&rft_dat=%3Cgale_proqu%3EA743012514%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779527113&rft_id=info:pmid/&rft_galeid=A743012514&rfr_iscdi=true