Study on Sintering Behavior of Reaction-Cured Glass Coating

High-emissivity coatings constitute an essential component of reusable thermal protection systems, determining the success or failure of hypersonic spacecraft. Reaction-cured glass coating is the basis for all current high-emissivity coatings, and the study of its sintering behavior is of great scie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2023-02, Vol.13 (2), p.463
Hauptverfasser: Li, Mingwei, Sun, Yulei, Zeng, Gang, Li, Wenhao, Zhong, Yesheng, Shi, Liping, Wang, Rongguo, He, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-emissivity coatings constitute an essential component of reusable thermal protection systems, determining the success or failure of hypersonic spacecraft. Reaction-cured glass coating is the basis for all current high-emissivity coatings, and the study of its sintering behavior is of great scientific significance for the development and performance enhancement of the coating. Microstructures and phase compositions of the samples before and after the sintering process were determined using SEM, XRD, and EDS. The sintering temperature, inserting temperature, and heating rate were systematically investigated. The results show that the effects of the sintering temperature, inserting temperature, and heating rate on the coating occur in decreasing order. The optimum condition for coating sintering in this study is an insertion temperature of 1100 °C, a heating rate of 10 °C/min, and a sintering temperature of 1200 °C, and a crack-free and containing SiB4 borosilicate glass coating was successfully prepared.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings13020463