Comparative Analysis of Traffic-Reduction Techniques for Seamless CAN-Based In-Vehicle Network Systems
Due to the benefits of better bandwidth and reliability, the automotive industry is moving towards Ethernet-based in-vehicle network (IVN) systems as the number of onboard electronic control units has increased. Considering that before long the well-known controller area network (CAN) will still be...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-02, Vol.12 (4), p.998 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the benefits of better bandwidth and reliability, the automotive industry is moving towards Ethernet-based in-vehicle network (IVN) systems as the number of onboard electronic control units has increased. Considering that before long the well-known controller area network (CAN) will still be considered a standard protocol, our earlier work introduced a high-availability seamless redundancy (HSR)-based Ethernet network architecture that provides IVNs with fault tolerance, called seamless CAN. However, HSR is known for its redundant traffic generated for fault tolerance, which is a disadvantage in bandwidth-limited IVN systems. Therefore, in this paper, we propose a traffic-effective architecture for seamless CAN-based networks. We compared the proficiency of different traffic-reduction approaches as they were applied to our proposed architecture. Extensive simulation results showed that our proposed solution could reduce up to 54% of the total network traffic compared to a conventional architecture while still being able to guarantee a high level of fault tolerance. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics12040998 |