The Pythagoras number of a rational function field in two variables
We prove that every sum of squares in the rational function field in two variables \(K(X,Y)\) over a hereditarily pythagorean field \(K\) is a sum of \(8\) squares. More precisely, we show that the Pythagoras number of every finite extension of \(K(X)\) is at most \(5\). The main ingredients of the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that every sum of squares in the rational function field in two variables \(K(X,Y)\) over a hereditarily pythagorean field \(K\) is a sum of \(8\) squares. More precisely, we show that the Pythagoras number of every finite extension of \(K(X)\) is at most \(5\). The main ingredients of the proof are a local-global principle for quadratic forms over function fields in one variable over a complete rank-\(1\) valued field due to V. Mehmeti and a valuation theoretic characterization of hereditarily pythagorean fields due to L. Br\"ocker. |
---|---|
ISSN: | 2331-8422 |