The Pythagoras number of a rational function field in two variables

We prove that every sum of squares in the rational function field in two variables \(K(X,Y)\) over a hereditarily pythagorean field \(K\) is a sum of \(8\) squares. More precisely, we show that the Pythagoras number of every finite extension of \(K(X)\) is at most \(5\). The main ingredients of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Becher, Karim Johannes, Daans, Nicolas, Grimm, David, Manzano-Flores, Gonzalo, Zaninelli, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that every sum of squares in the rational function field in two variables \(K(X,Y)\) over a hereditarily pythagorean field \(K\) is a sum of \(8\) squares. More precisely, we show that the Pythagoras number of every finite extension of \(K(X)\) is at most \(5\). The main ingredients of the proof are a local-global principle for quadratic forms over function fields in one variable over a complete rank-\(1\) valued field due to V. Mehmeti and a valuation theoretic characterization of hereditarily pythagorean fields due to L. Br\"ocker.
ISSN:2331-8422