HAUSDORFF DIMENSION FOR THE SET OF POINTS CONNECTED WITH THE GENERALIZED JARNÍK–BESICOVITCH SET

In this article we aim to investigate the Hausdorff dimension of the set of points $x \in [0,1)$ such that for any $r\in \mathbb {N}$ , $$ \begin{align*} a_{n+1}(x)a_{n+2}(x)\cdots a_{n+r}(x)\geq e^{\tau(x)(h(x)+\cdots+h(T^{n-1}(x)))} \end{align*} $$ holds for infinitely many $n\in \mathbb {N}$ , wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Australian Mathematical Society (2001) 2022-02, Vol.112 (1), p.1-29
1. Verfasser: BAKHTAWAR, AYREENA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 1
container_title Journal of the Australian Mathematical Society (2001)
container_volume 112
creator BAKHTAWAR, AYREENA
description In this article we aim to investigate the Hausdorff dimension of the set of points $x \in [0,1)$ such that for any $r\in \mathbb {N}$ , $$ \begin{align*} a_{n+1}(x)a_{n+2}(x)\cdots a_{n+r}(x)\geq e^{\tau(x)(h(x)+\cdots+h(T^{n-1}(x)))} \end{align*} $$ holds for infinitely many $n\in \mathbb {N}$ , where h and $\tau $ are positive continuous functions, T is the Gauss map and $a_{n}(x)$ denotes the nth partial quotient of x in its continued fraction expansion. By appropriate choices of $r,\tau (x)$ and $h(x)$ we obtain various classical results including the famous Jarník–Besicovitch theorem.
doi_str_mv 10.1017/S1446788720000464
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779235037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446788720000464</cupid><sourcerecordid>2779235037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-26eb812059ba14a96d782ff5f984b5177f0c4a42e839f1557738013d5b889ca53</originalsourceid><addsrcrecordid>eNp1UE1Og0AUnhhNrNUDuJvENTq_zLBEOpRRZAxQTdwQoGDaWFuhXbjzAq48kjfxJIJt4sL4Nu_l-3vJB8ApRucYYXGRYMZsIaUgqBtmsz0w6CFLYiT2d3fPH4Kjtp0jRDCz0QAUgTtJRib2fTjSNypKtImgb2KYBgomKoXGh7dGR2kCPRNFykvVCN7rNPgRjFWkYjfUDx145cbR5_v119vHpUq0Z-506gV9xDE4qPOntjrZ7SGY-KrjrNCMteeGVkmxWFvErgqJCeJOkWOWO_ZUSFLXvHYkKzgWokYlyxmpJHVqzLkQVCJMp7yQ0ilzTofgbJu7apYvm6pdZ_PlpnnuXmZECIdQjqjoVHirKptl2zZVna2a2SJvXjOMsr7K7E-VnYfuPPmiaGbTx-o3-n_XN8RwbTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779235037</pqid></control><display><type>article</type><title>HAUSDORFF DIMENSION FOR THE SET OF POINTS CONNECTED WITH THE GENERALIZED JARNÍK–BESICOVITCH SET</title><source>Cambridge University Press Journals Complete</source><creator>BAKHTAWAR, AYREENA</creator><creatorcontrib>BAKHTAWAR, AYREENA</creatorcontrib><description>In this article we aim to investigate the Hausdorff dimension of the set of points $x \in [0,1)$ such that for any $r\in \mathbb {N}$ , $$ \begin{align*} a_{n+1}(x)a_{n+2}(x)\cdots a_{n+r}(x)\geq e^{\tau(x)(h(x)+\cdots+h(T^{n-1}(x)))} \end{align*} $$ holds for infinitely many $n\in \mathbb {N}$ , where h and $\tau $ are positive continuous functions, T is the Gauss map and $a_{n}(x)$ denotes the nth partial quotient of x in its continued fraction expansion. By appropriate choices of $r,\tau (x)$ and $h(x)$ we obtain various classical results including the famous Jarník–Besicovitch theorem.</description><identifier>ISSN: 1446-7887</identifier><identifier>EISSN: 1446-8107</identifier><identifier>DOI: 10.1017/S1446788720000464</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Continuity (mathematics)</subject><ispartof>Journal of the Australian Mathematical Society (2001), 2022-02, Vol.112 (1), p.1-29</ispartof><rights>2020 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-26eb812059ba14a96d782ff5f984b5177f0c4a42e839f1557738013d5b889ca53</citedby><cites>FETCH-LOGICAL-c317t-26eb812059ba14a96d782ff5f984b5177f0c4a42e839f1557738013d5b889ca53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1446788720000464/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>BAKHTAWAR, AYREENA</creatorcontrib><title>HAUSDORFF DIMENSION FOR THE SET OF POINTS CONNECTED WITH THE GENERALIZED JARNÍK–BESICOVITCH SET</title><title>Journal of the Australian Mathematical Society (2001)</title><addtitle>J. Aust. Math. Soc</addtitle><description>In this article we aim to investigate the Hausdorff dimension of the set of points $x \in [0,1)$ such that for any $r\in \mathbb {N}$ , $$ \begin{align*} a_{n+1}(x)a_{n+2}(x)\cdots a_{n+r}(x)\geq e^{\tau(x)(h(x)+\cdots+h(T^{n-1}(x)))} \end{align*} $$ holds for infinitely many $n\in \mathbb {N}$ , where h and $\tau $ are positive continuous functions, T is the Gauss map and $a_{n}(x)$ denotes the nth partial quotient of x in its continued fraction expansion. By appropriate choices of $r,\tau (x)$ and $h(x)$ we obtain various classical results including the famous Jarník–Besicovitch theorem.</description><subject>Continuity (mathematics)</subject><issn>1446-7887</issn><issn>1446-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1Og0AUnhhNrNUDuJvENTq_zLBEOpRRZAxQTdwQoGDaWFuhXbjzAq48kjfxJIJt4sL4Nu_l-3vJB8ApRucYYXGRYMZsIaUgqBtmsz0w6CFLYiT2d3fPH4Kjtp0jRDCz0QAUgTtJRib2fTjSNypKtImgb2KYBgomKoXGh7dGR2kCPRNFykvVCN7rNPgRjFWkYjfUDx145cbR5_v119vHpUq0Z-506gV9xDE4qPOntjrZ7SGY-KrjrNCMteeGVkmxWFvErgqJCeJOkWOWO_ZUSFLXvHYkKzgWokYlyxmpJHVqzLkQVCJMp7yQ0ilzTofgbJu7apYvm6pdZ_PlpnnuXmZECIdQjqjoVHirKptl2zZVna2a2SJvXjOMsr7K7E-VnYfuPPmiaGbTx-o3-n_XN8RwbTk</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>BAKHTAWAR, AYREENA</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220201</creationdate><title>HAUSDORFF DIMENSION FOR THE SET OF POINTS CONNECTED WITH THE GENERALIZED JARNÍK–BESICOVITCH SET</title><author>BAKHTAWAR, AYREENA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-26eb812059ba14a96d782ff5f984b5177f0c4a42e839f1557738013d5b889ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Continuity (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAKHTAWAR, AYREENA</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAKHTAWAR, AYREENA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HAUSDORFF DIMENSION FOR THE SET OF POINTS CONNECTED WITH THE GENERALIZED JARNÍK–BESICOVITCH SET</atitle><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle><addtitle>J. Aust. Math. Soc</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>112</volume><issue>1</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>1446-7887</issn><eissn>1446-8107</eissn><abstract>In this article we aim to investigate the Hausdorff dimension of the set of points $x \in [0,1)$ such that for any $r\in \mathbb {N}$ , $$ \begin{align*} a_{n+1}(x)a_{n+2}(x)\cdots a_{n+r}(x)\geq e^{\tau(x)(h(x)+\cdots+h(T^{n-1}(x)))} \end{align*} $$ holds for infinitely many $n\in \mathbb {N}$ , where h and $\tau $ are positive continuous functions, T is the Gauss map and $a_{n}(x)$ denotes the nth partial quotient of x in its continued fraction expansion. By appropriate choices of $r,\tau (x)$ and $h(x)$ we obtain various classical results including the famous Jarník–Besicovitch theorem.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446788720000464</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1446-7887
ispartof Journal of the Australian Mathematical Society (2001), 2022-02, Vol.112 (1), p.1-29
issn 1446-7887
1446-8107
language eng
recordid cdi_proquest_journals_2779235037
source Cambridge University Press Journals Complete
subjects Continuity (mathematics)
title HAUSDORFF DIMENSION FOR THE SET OF POINTS CONNECTED WITH THE GENERALIZED JARNÍK–BESICOVITCH SET
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HAUSDORFF%20DIMENSION%20FOR%20THE%20SET%20OF%20POINTS%20CONNECTED%20WITH%20THE%20GENERALIZED%20JARN%C3%8DK%E2%80%93BESICOVITCH%20SET&rft.jtitle=Journal%20of%20the%20Australian%20Mathematical%20Society%20(2001)&rft.au=BAKHTAWAR,%20AYREENA&rft.date=2022-02-01&rft.volume=112&rft.issue=1&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=1446-7887&rft.eissn=1446-8107&rft_id=info:doi/10.1017/S1446788720000464&rft_dat=%3Cproquest_cross%3E2779235037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779235037&rft_id=info:pmid/&rft_cupid=10_1017_S1446788720000464&rfr_iscdi=true