HAUSDORFF DIMENSION FOR THE SET OF POINTS CONNECTED WITH THE GENERALIZED JARNÍK–BESICOVITCH SET
In this article we aim to investigate the Hausdorff dimension of the set of points $x \in [0,1)$ such that for any $r\in \mathbb {N}$ , $$ \begin{align*} a_{n+1}(x)a_{n+2}(x)\cdots a_{n+r}(x)\geq e^{\tau(x)(h(x)+\cdots+h(T^{n-1}(x)))} \end{align*} $$ holds for infinitely many $n\in \mathbb {N}$ , wh...
Gespeichert in:
Veröffentlicht in: | Journal of the Australian Mathematical Society (2001) 2022-02, Vol.112 (1), p.1-29 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we aim to investigate the Hausdorff dimension of the set of points
$x \in [0,1)$
such that for any
$r\in \mathbb {N}$
,
$$ \begin{align*} a_{n+1}(x)a_{n+2}(x)\cdots a_{n+r}(x)\geq e^{\tau(x)(h(x)+\cdots+h(T^{n-1}(x)))} \end{align*} $$
holds for infinitely many
$n\in \mathbb {N}$
, where h and
$\tau $
are positive continuous functions, T is the Gauss map and
$a_{n}(x)$
denotes the nth partial quotient of x in its continued fraction expansion. By appropriate choices of
$r,\tau (x)$
and
$h(x)$
we obtain various classical results including the famous Jarník–Besicovitch theorem. |
---|---|
ISSN: | 1446-7887 1446-8107 |
DOI: | 10.1017/S1446788720000464 |