INDESTRUCTIBILITY OF THE TREE PROPERTY

In the first part of the article, we show that if $\omega \le \kappa < \lambda$ are cardinals, ${\kappa ^{ < \kappa }} = \kappa$ , and λ is weakly compact, then in $V\left[M {\left( {\kappa ,\lambda } \right)} \right]$ the tree property at $$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2020-03, Vol.85 (1), p.467-485
Hauptverfasser: HONZIK, RADEK, STEJSKALOVÁ, ŠÁRKA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 485
container_issue 1
container_start_page 467
container_title The Journal of symbolic logic
container_volume 85
creator HONZIK, RADEK
STEJSKALOVÁ, ŠÁRKA
description In the first part of the article, we show that if $\omega \le \kappa < \lambda$ are cardinals, ${\kappa ^{ < \kappa }} = \kappa$ , and λ is weakly compact, then in $V\left[M {\left( {\kappa ,\lambda } \right)} \right]$ the tree property at $$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $$ is indestructible under all ${\kappa ^ + }$ -cc forcing notions which live in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$ , where ${\rm{Add}}\left( {\kappa ,\lambda } \right)$ is the Cohen forcing for adding λ -many subsets of κ and $\left( {\kappa ,\lambda } \right)$ is the standard Mitchell forcing for obtaining the tree property at $\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $ . This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that λ is supercompact and generalize the construction and obtain a model ${V^{\rm{*}}}$ , a generic extension of V , in which the tree property at ${\left( {{\kappa ^{ + + }}} \right)^{{V^{\rm{*}}}$ is indestructible under all ${\kappa ^ + }$ -cc forcing notions living in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$ , and in addition under all forcing notions living in ${V^{\rm{*}}}$ which are ${\kappa ^ + }$ -closed and “liftable” in a prescribed sense (such as ${\kappa ^{ + + }}$ -directed closed forcings or well-met forcings which are ${\kappa ^{ + + }}$ -closed with the greatest lower bounds).
doi_str_mv 10.1017/jsl.2019.61
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779156422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779156422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-b300da3713180cfab26a7b28927d78fe5adc2a55255e316fff0206aa291417c53</originalsourceid><addsrcrecordid>eNotkM1Kw0AURgdRMFZXvkBAcCOJ997J_GSpbWoDxZY4XXQ1TJMMGKqtmXbh25tSV9_m8B04jN0jpAionruwTQkwTyVesAjzjCdCa3nJIgCiJNNI1-wmhA4ARJ7piD2W75Piw1SrsSlfy3lp1vFiGptZEZuqKOJltVgWlVnfsivvtqG9-98RW00LM54l88VbOX6ZJzVJPCQbDtA4rpCjhtq7DUmnNqRzUo3SvhWuqckJQUK0HKX3Hgikc5RjhqoWfMQezr_7fvdzbMPBdrtj_z0oLSmVo5AZ0UA9nam634XQt97u-88v1_9aBHsKYYcQ9hTCSuR_yvxLRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779156422</pqid></control><display><type>article</type><title>INDESTRUCTIBILITY OF THE TREE PROPERTY</title><source>Cambridge University Press Journals Complete</source><creator>HONZIK, RADEK ; STEJSKALOVÁ, ŠÁRKA</creator><creatorcontrib>HONZIK, RADEK ; STEJSKALOVÁ, ŠÁRKA</creatorcontrib><description>In the first part of the article, we show that if $\omega \le \kappa &lt; \lambda$ are cardinals, ${\kappa ^{ &lt; \kappa }} = \kappa$ , and λ is weakly compact, then in $V\left[M {\left( {\kappa ,\lambda } \right)} \right]$ the tree property at $$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $$ is indestructible under all ${\kappa ^ + }$ -cc forcing notions which live in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$ , where ${\rm{Add}}\left( {\kappa ,\lambda } \right)$ is the Cohen forcing for adding λ -many subsets of κ and $\left( {\kappa ,\lambda } \right)$ is the standard Mitchell forcing for obtaining the tree property at $\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $ . This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that λ is supercompact and generalize the construction and obtain a model ${V^{\rm{*}}}$ , a generic extension of V , in which the tree property at ${\left( {{\kappa ^{ + + }}} \right)^{{V^{\rm{*}}}$ is indestructible under all ${\kappa ^ + }$ -cc forcing notions living in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$ , and in addition under all forcing notions living in ${V^{\rm{*}}}$ which are ${\kappa ^ + }$ -closed and “liftable” in a prescribed sense (such as ${\kappa ^{ + + }}$ -directed closed forcings or well-met forcings which are ${\kappa ^{ + + }}$ -closed with the greatest lower bounds).</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2019.61</identifier><language>eng</language><publisher>Pasadena: Cambridge University Press</publisher><subject>Logic ; Mathematics ; Philosophy ; Trees</subject><ispartof>The Journal of symbolic logic, 2020-03, Vol.85 (1), p.467-485</ispartof><rights>Copyright © The Association for Symbolic Logic 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-b300da3713180cfab26a7b28927d78fe5adc2a55255e316fff0206aa291417c53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>HONZIK, RADEK</creatorcontrib><creatorcontrib>STEJSKALOVÁ, ŠÁRKA</creatorcontrib><title>INDESTRUCTIBILITY OF THE TREE PROPERTY</title><title>The Journal of symbolic logic</title><description>In the first part of the article, we show that if $\omega \le \kappa &lt; \lambda$ are cardinals, ${\kappa ^{ &lt; \kappa }} = \kappa$ , and λ is weakly compact, then in $V\left[M {\left( {\kappa ,\lambda } \right)} \right]$ the tree property at $$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $$ is indestructible under all ${\kappa ^ + }$ -cc forcing notions which live in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$ , where ${\rm{Add}}\left( {\kappa ,\lambda } \right)$ is the Cohen forcing for adding λ -many subsets of κ and $\left( {\kappa ,\lambda } \right)$ is the standard Mitchell forcing for obtaining the tree property at $\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $ . This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that λ is supercompact and generalize the construction and obtain a model ${V^{\rm{*}}}$ , a generic extension of V , in which the tree property at ${\left( {{\kappa ^{ + + }}} \right)^{{V^{\rm{*}}}$ is indestructible under all ${\kappa ^ + }$ -cc forcing notions living in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$ , and in addition under all forcing notions living in ${V^{\rm{*}}}$ which are ${\kappa ^ + }$ -closed and “liftable” in a prescribed sense (such as ${\kappa ^{ + + }}$ -directed closed forcings or well-met forcings which are ${\kappa ^{ + + }}$ -closed with the greatest lower bounds).</description><subject>Logic</subject><subject>Mathematics</subject><subject>Philosophy</subject><subject>Trees</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkM1Kw0AURgdRMFZXvkBAcCOJ997J_GSpbWoDxZY4XXQ1TJMMGKqtmXbh25tSV9_m8B04jN0jpAionruwTQkwTyVesAjzjCdCa3nJIgCiJNNI1-wmhA4ARJ7piD2W75Piw1SrsSlfy3lp1vFiGptZEZuqKOJltVgWlVnfsivvtqG9-98RW00LM54l88VbOX6ZJzVJPCQbDtA4rpCjhtq7DUmnNqRzUo3SvhWuqckJQUK0HKX3Hgikc5RjhqoWfMQezr_7fvdzbMPBdrtj_z0oLSmVo5AZ0UA9nam634XQt97u-88v1_9aBHsKYYcQ9hTCSuR_yvxLRg</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>HONZIK, RADEK</creator><creator>STEJSKALOVÁ, ŠÁRKA</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AABKS</scope><scope>ABSDQ</scope></search><sort><creationdate>202003</creationdate><title>INDESTRUCTIBILITY OF THE TREE PROPERTY</title><author>HONZIK, RADEK ; STEJSKALOVÁ, ŠÁRKA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-b300da3713180cfab26a7b28927d78fe5adc2a55255e316fff0206aa291417c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Logic</topic><topic>Mathematics</topic><topic>Philosophy</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HONZIK, RADEK</creatorcontrib><creatorcontrib>STEJSKALOVÁ, ŠÁRKA</creatorcontrib><collection>CrossRef</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HONZIK, RADEK</au><au>STEJSKALOVÁ, ŠÁRKA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>INDESTRUCTIBILITY OF THE TREE PROPERTY</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2020-03</date><risdate>2020</risdate><volume>85</volume><issue>1</issue><spage>467</spage><epage>485</epage><pages>467-485</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>In the first part of the article, we show that if $\omega \le \kappa &lt; \lambda$ are cardinals, ${\kappa ^{ &lt; \kappa }} = \kappa$ , and λ is weakly compact, then in $V\left[M {\left( {\kappa ,\lambda } \right)} \right]$ the tree property at $$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $$ is indestructible under all ${\kappa ^ + }$ -cc forcing notions which live in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$ , where ${\rm{Add}}\left( {\kappa ,\lambda } \right)$ is the Cohen forcing for adding λ -many subsets of κ and $\left( {\kappa ,\lambda } \right)$ is the standard Mitchell forcing for obtaining the tree property at $\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $ . This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that λ is supercompact and generalize the construction and obtain a model ${V^{\rm{*}}}$ , a generic extension of V , in which the tree property at ${\left( {{\kappa ^{ + + }}} \right)^{{V^{\rm{*}}}$ is indestructible under all ${\kappa ^ + }$ -cc forcing notions living in $V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$ , and in addition under all forcing notions living in ${V^{\rm{*}}}$ which are ${\kappa ^ + }$ -closed and “liftable” in a prescribed sense (such as ${\kappa ^{ + + }}$ -directed closed forcings or well-met forcings which are ${\kappa ^{ + + }}$ -closed with the greatest lower bounds).</abstract><cop>Pasadena</cop><pub>Cambridge University Press</pub><doi>10.1017/jsl.2019.61</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4812
ispartof The Journal of symbolic logic, 2020-03, Vol.85 (1), p.467-485
issn 0022-4812
1943-5886
language eng
recordid cdi_proquest_journals_2779156422
source Cambridge University Press Journals Complete
subjects Logic
Mathematics
Philosophy
Trees
title INDESTRUCTIBILITY OF THE TREE PROPERTY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=INDESTRUCTIBILITY%20OF%20THE%20TREE%20PROPERTY&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=HONZIK,%20RADEK&rft.date=2020-03&rft.volume=85&rft.issue=1&rft.spage=467&rft.epage=485&rft.pages=467-485&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2019.61&rft_dat=%3Cproquest_cross%3E2779156422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779156422&rft_id=info:pmid/&rfr_iscdi=true