INDESTRUCTIBILITY OF THE TREE PROPERTY
In the first part of the article, we show that if $\omega \le \kappa < \lambda$ are cardinals, ${\kappa ^{ < \kappa }} = \kappa$ , and λ is weakly compact, then in $V\left[M {\left( {\kappa ,\lambda } \right)} \right]$ the tree property at $$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2020-03, Vol.85 (1), p.467-485 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 485 |
---|---|
container_issue | 1 |
container_start_page | 467 |
container_title | The Journal of symbolic logic |
container_volume | 85 |
creator | HONZIK, RADEK STEJSKALOVÁ, ŠÁRKA |
description | In the first part of the article, we show that if
$\omega \le \kappa < \lambda$
are cardinals,
${\kappa ^{ < \kappa }} = \kappa$
, and
λ
is weakly compact, then in
$V\left[M {\left( {\kappa ,\lambda } \right)} \right]$
the tree property at
$$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $$
is indestructible under all
${\kappa ^ + }$
-cc forcing notions which live in
$V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$
, where
${\rm{Add}}\left( {\kappa ,\lambda } \right)$
is the Cohen forcing for adding
λ
-many subsets of
κ
and
$\left( {\kappa ,\lambda } \right)$
is the standard Mitchell forcing for obtaining the tree property at
$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $
. This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that
λ
is supercompact and generalize the construction and obtain a model
${V^{\rm{*}}}$
, a generic extension of
V
, in which the tree property at
${\left( {{\kappa ^{ + + }}} \right)^{{V^{\rm{*}}}$
is indestructible under all
${\kappa ^ + }$
-cc forcing notions living in
$V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$
, and in addition under all forcing notions living in
${V^{\rm{*}}}$
which are
${\kappa ^ + }$
-closed and “liftable” in a prescribed sense (such as
${\kappa ^{ + + }}$
-directed closed forcings or well-met forcings which are
${\kappa ^{ + + }}$
-closed with the greatest lower bounds). |
doi_str_mv | 10.1017/jsl.2019.61 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779156422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779156422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-b300da3713180cfab26a7b28927d78fe5adc2a55255e316fff0206aa291417c53</originalsourceid><addsrcrecordid>eNotkM1Kw0AURgdRMFZXvkBAcCOJ997J_GSpbWoDxZY4XXQ1TJMMGKqtmXbh25tSV9_m8B04jN0jpAionruwTQkwTyVesAjzjCdCa3nJIgCiJNNI1-wmhA4ARJ7piD2W75Piw1SrsSlfy3lp1vFiGptZEZuqKOJltVgWlVnfsivvtqG9-98RW00LM54l88VbOX6ZJzVJPCQbDtA4rpCjhtq7DUmnNqRzUo3SvhWuqckJQUK0HKX3Hgikc5RjhqoWfMQezr_7fvdzbMPBdrtj_z0oLSmVo5AZ0UA9nam634XQt97u-88v1_9aBHsKYYcQ9hTCSuR_yvxLRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779156422</pqid></control><display><type>article</type><title>INDESTRUCTIBILITY OF THE TREE PROPERTY</title><source>Cambridge University Press Journals Complete</source><creator>HONZIK, RADEK ; STEJSKALOVÁ, ŠÁRKA</creator><creatorcontrib>HONZIK, RADEK ; STEJSKALOVÁ, ŠÁRKA</creatorcontrib><description>In the first part of the article, we show that if
$\omega \le \kappa < \lambda$
are cardinals,
${\kappa ^{ < \kappa }} = \kappa$
, and
λ
is weakly compact, then in
$V\left[M {\left( {\kappa ,\lambda } \right)} \right]$
the tree property at
$$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $$
is indestructible under all
${\kappa ^ + }$
-cc forcing notions which live in
$V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$
, where
${\rm{Add}}\left( {\kappa ,\lambda } \right)$
is the Cohen forcing for adding
λ
-many subsets of
κ
and
$\left( {\kappa ,\lambda } \right)$
is the standard Mitchell forcing for obtaining the tree property at
$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $
. This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that
λ
is supercompact and generalize the construction and obtain a model
${V^{\rm{*}}}$
, a generic extension of
V
, in which the tree property at
${\left( {{\kappa ^{ + + }}} \right)^{{V^{\rm{*}}}$
is indestructible under all
${\kappa ^ + }$
-cc forcing notions living in
$V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$
, and in addition under all forcing notions living in
${V^{\rm{*}}}$
which are
${\kappa ^ + }$
-closed and “liftable” in a prescribed sense (such as
${\kappa ^{ + + }}$
-directed closed forcings or well-met forcings which are
${\kappa ^{ + + }}$
-closed with the greatest lower bounds).</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2019.61</identifier><language>eng</language><publisher>Pasadena: Cambridge University Press</publisher><subject>Logic ; Mathematics ; Philosophy ; Trees</subject><ispartof>The Journal of symbolic logic, 2020-03, Vol.85 (1), p.467-485</ispartof><rights>Copyright © The Association for Symbolic Logic 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-b300da3713180cfab26a7b28927d78fe5adc2a55255e316fff0206aa291417c53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>HONZIK, RADEK</creatorcontrib><creatorcontrib>STEJSKALOVÁ, ŠÁRKA</creatorcontrib><title>INDESTRUCTIBILITY OF THE TREE PROPERTY</title><title>The Journal of symbolic logic</title><description>In the first part of the article, we show that if
$\omega \le \kappa < \lambda$
are cardinals,
${\kappa ^{ < \kappa }} = \kappa$
, and
λ
is weakly compact, then in
$V\left[M {\left( {\kappa ,\lambda } \right)} \right]$
the tree property at
$$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $$
is indestructible under all
${\kappa ^ + }$
-cc forcing notions which live in
$V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$
, where
${\rm{Add}}\left( {\kappa ,\lambda } \right)$
is the Cohen forcing for adding
λ
-many subsets of
κ
and
$\left( {\kappa ,\lambda } \right)$
is the standard Mitchell forcing for obtaining the tree property at
$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $
. This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that
λ
is supercompact and generalize the construction and obtain a model
${V^{\rm{*}}}$
, a generic extension of
V
, in which the tree property at
${\left( {{\kappa ^{ + + }}} \right)^{{V^{\rm{*}}}$
is indestructible under all
${\kappa ^ + }$
-cc forcing notions living in
$V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$
, and in addition under all forcing notions living in
${V^{\rm{*}}}$
which are
${\kappa ^ + }$
-closed and “liftable” in a prescribed sense (such as
${\kappa ^{ + + }}$
-directed closed forcings or well-met forcings which are
${\kappa ^{ + + }}$
-closed with the greatest lower bounds).</description><subject>Logic</subject><subject>Mathematics</subject><subject>Philosophy</subject><subject>Trees</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkM1Kw0AURgdRMFZXvkBAcCOJ997J_GSpbWoDxZY4XXQ1TJMMGKqtmXbh25tSV9_m8B04jN0jpAionruwTQkwTyVesAjzjCdCa3nJIgCiJNNI1-wmhA4ARJ7piD2W75Piw1SrsSlfy3lp1vFiGptZEZuqKOJltVgWlVnfsivvtqG9-98RW00LM54l88VbOX6ZJzVJPCQbDtA4rpCjhtq7DUmnNqRzUo3SvhWuqckJQUK0HKX3Hgikc5RjhqoWfMQezr_7fvdzbMPBdrtj_z0oLSmVo5AZ0UA9nam634XQt97u-88v1_9aBHsKYYcQ9hTCSuR_yvxLRg</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>HONZIK, RADEK</creator><creator>STEJSKALOVÁ, ŠÁRKA</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AABKS</scope><scope>ABSDQ</scope></search><sort><creationdate>202003</creationdate><title>INDESTRUCTIBILITY OF THE TREE PROPERTY</title><author>HONZIK, RADEK ; STEJSKALOVÁ, ŠÁRKA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-b300da3713180cfab26a7b28927d78fe5adc2a55255e316fff0206aa291417c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Logic</topic><topic>Mathematics</topic><topic>Philosophy</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HONZIK, RADEK</creatorcontrib><creatorcontrib>STEJSKALOVÁ, ŠÁRKA</creatorcontrib><collection>CrossRef</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HONZIK, RADEK</au><au>STEJSKALOVÁ, ŠÁRKA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>INDESTRUCTIBILITY OF THE TREE PROPERTY</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2020-03</date><risdate>2020</risdate><volume>85</volume><issue>1</issue><spage>467</spage><epage>485</epage><pages>467-485</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>In the first part of the article, we show that if
$\omega \le \kappa < \lambda$
are cardinals,
${\kappa ^{ < \kappa }} = \kappa$
, and
λ
is weakly compact, then in
$V\left[M {\left( {\kappa ,\lambda } \right)} \right]$
the tree property at
$$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $$
is indestructible under all
${\kappa ^ + }$
-cc forcing notions which live in
$V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$
, where
${\rm{Add}}\left( {\kappa ,\lambda } \right)$
is the Cohen forcing for adding
λ
-many subsets of
κ
and
$\left( {\kappa ,\lambda } \right)$
is the standard Mitchell forcing for obtaining the tree property at
$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $
. This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that
λ
is supercompact and generalize the construction and obtain a model
${V^{\rm{*}}}$
, a generic extension of
V
, in which the tree property at
${\left( {{\kappa ^{ + + }}} \right)^{{V^{\rm{*}}}$
is indestructible under all
${\kappa ^ + }$
-cc forcing notions living in
$V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$
, and in addition under all forcing notions living in
${V^{\rm{*}}}$
which are
${\kappa ^ + }$
-closed and “liftable” in a prescribed sense (such as
${\kappa ^{ + + }}$
-directed closed forcings or well-met forcings which are
${\kappa ^{ + + }}$
-closed with the greatest lower bounds).</abstract><cop>Pasadena</cop><pub>Cambridge University Press</pub><doi>10.1017/jsl.2019.61</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 2020-03, Vol.85 (1), p.467-485 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_proquest_journals_2779156422 |
source | Cambridge University Press Journals Complete |
subjects | Logic Mathematics Philosophy Trees |
title | INDESTRUCTIBILITY OF THE TREE PROPERTY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=INDESTRUCTIBILITY%20OF%20THE%20TREE%20PROPERTY&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=HONZIK,%20RADEK&rft.date=2020-03&rft.volume=85&rft.issue=1&rft.spage=467&rft.epage=485&rft.pages=467-485&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2019.61&rft_dat=%3Cproquest_cross%3E2779156422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779156422&rft_id=info:pmid/&rfr_iscdi=true |