INDESTRUCTIBILITY OF THE TREE PROPERTY
In the first part of the article, we show that if $\omega \le \kappa < \lambda$ are cardinals, ${\kappa ^{ < \kappa }} = \kappa$ , and λ is weakly compact, then in $V\left[M {\left( {\kappa ,\lambda } \right)} \right]$ the tree property at $$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2020-03, Vol.85 (1), p.467-485 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the first part of the article, we show that if
$\omega \le \kappa < \lambda$
are cardinals,
${\kappa ^{ < \kappa }} = \kappa$
, and
λ
is weakly compact, then in
$V\left[M {\left( {\kappa ,\lambda } \right)} \right]$
the tree property at
$$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $$
is indestructible under all
${\kappa ^ + }$
-cc forcing notions which live in
$V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$
, where
${\rm{Add}}\left( {\kappa ,\lambda } \right)$
is the Cohen forcing for adding
λ
-many subsets of
κ
and
$\left( {\kappa ,\lambda } \right)$
is the standard Mitchell forcing for obtaining the tree property at
$\lambda = \left( {\kappa ^{ + + } } \right)^{V\left[ {\left( {\kappa ,\lambda } \right)} \right]} $
. This result has direct applications to Prikry-type forcing notions and generalized cardinal invariants. In the second part, we assume that
λ
is supercompact and generalize the construction and obtain a model
${V^{\rm{*}}}$
, a generic extension of
V
, in which the tree property at
${\left( {{\kappa ^{ + + }}} \right)^{{V^{\rm{*}}}$
is indestructible under all
${\kappa ^ + }$
-cc forcing notions living in
$V\left[ {{\rm{Add}}\left( {\kappa ,\lambda } \right)} \right]$
, and in addition under all forcing notions living in
${V^{\rm{*}}}$
which are
${\kappa ^ + }$
-closed and “liftable” in a prescribed sense (such as
${\kappa ^{ + + }}$
-directed closed forcings or well-met forcings which are
${\kappa ^{ + + }}$
-closed with the greatest lower bounds). |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2019.61 |