TBNN: totally-binary neural network for image classification

Most binary networks apply full precision convolution at the first layer. Changing the first layer to the binary convolution will result in a significant loss of accuracy. In this paper, we propose a new approach to solve this problem by widening the data channel to reduce the information loss of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optoelectronics letters 2023-02, Vol.19 (2), p.117-122
Hauptverfasser: Zhang, Qingsong, Sun, Linjun, Yang, Guowei, Lu, Baoli, Ning, Xin, Li, Weijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most binary networks apply full precision convolution at the first layer. Changing the first layer to the binary convolution will result in a significant loss of accuracy. In this paper, we propose a new approach to solve this problem by widening the data channel to reduce the information loss of the first convolutional input through the sign function. In addition, widening the channel increases the computation of the first convolution layer, and the problem is solved by using group convolution. The experimental results show that the accuracy of applying this paper’s method to state-of-the-art (SOTA) binarization method is significantly improved, proving that this paper’s method is effective and feasible.
ISSN:1673-1905
1993-5013
DOI:10.1007/s11801-023-2113-2