Blowups and Tops of Overlapping Iterated Function Systems

We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Barnsley, Louisa F, Barnsley, Michael F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Barnsley, Louisa F
Barnsley, Michael F
description We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and explain how they may be used to construct tilings of \(\mathbb{R}^{n}\) even in the case where the i.f.s. is overlapping. We introduce and establish the notion of "tops" of blowups. Our motives are not pure: we seek to show that a simple i.f.s. and an idea of Strichartz, can be used to create complicated tilings that may model natural structures.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2778779769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778779769</sourcerecordid><originalsourceid>FETCH-proquest_journals_27787797693</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdMrJLy8tKFZIzEtRCMkHMvLTFPzLUotyEgsKMvPSFTxLUosSS1JTFNxK85JLMvPzFIIri0tSc4t5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyNzcwtzc0tzM0pg4VQCHgTa5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778779769</pqid></control><display><type>article</type><title>Blowups and Tops of Overlapping Iterated Function Systems</title><source>Free E- Journals</source><creator>Barnsley, Louisa F ; Barnsley, Michael F</creator><creatorcontrib>Barnsley, Louisa F ; Barnsley, Michael F</creatorcontrib><description>We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and explain how they may be used to construct tilings of \(\mathbb{R}^{n}\) even in the case where the i.f.s. is overlapping. We introduce and establish the notion of "tops" of blowups. Our motives are not pure: we seek to show that a simple i.f.s. and an idea of Strichartz, can be used to create complicated tilings that may model natural structures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fractals</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Barnsley, Louisa F</creatorcontrib><creatorcontrib>Barnsley, Michael F</creatorcontrib><title>Blowups and Tops of Overlapping Iterated Function Systems</title><title>arXiv.org</title><description>We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and explain how they may be used to construct tilings of \(\mathbb{R}^{n}\) even in the case where the i.f.s. is overlapping. We introduce and establish the notion of "tops" of blowups. Our motives are not pure: we seek to show that a simple i.f.s. and an idea of Strichartz, can be used to create complicated tilings that may model natural structures.</description><subject>Fractals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdMrJLy8tKFZIzEtRCMkHMvLTFPzLUotyEgsKMvPSFTxLUosSS1JTFNxK85JLMvPzFIIri0tSc4t5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyNzcwtzc0tzM0pg4VQCHgTa5</recordid><startdate>20230221</startdate><enddate>20230221</enddate><creator>Barnsley, Louisa F</creator><creator>Barnsley, Michael F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230221</creationdate><title>Blowups and Tops of Overlapping Iterated Function Systems</title><author>Barnsley, Louisa F ; Barnsley, Michael F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27787797693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fractals</topic><toplevel>online_resources</toplevel><creatorcontrib>Barnsley, Louisa F</creatorcontrib><creatorcontrib>Barnsley, Michael F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnsley, Louisa F</au><au>Barnsley, Michael F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Blowups and Tops of Overlapping Iterated Function Systems</atitle><jtitle>arXiv.org</jtitle><date>2023-02-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and explain how they may be used to construct tilings of \(\mathbb{R}^{n}\) even in the case where the i.f.s. is overlapping. We introduce and establish the notion of "tops" of blowups. Our motives are not pure: we seek to show that a simple i.f.s. and an idea of Strichartz, can be used to create complicated tilings that may model natural structures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2778779769
source Free E- Journals
subjects Fractals
title Blowups and Tops of Overlapping Iterated Function Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Blowups%20and%20Tops%20of%20Overlapping%20Iterated%20Function%20Systems&rft.jtitle=arXiv.org&rft.au=Barnsley,%20Louisa%20F&rft.date=2023-02-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2778779769%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778779769&rft_id=info:pmid/&rfr_iscdi=true