Blowups and Tops of Overlapping Iterated Function Systems
We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Barnsley, Louisa F Barnsley, Michael F |
description | We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and explain how they may be used to construct tilings of \(\mathbb{R}^{n}\) even in the case where the i.f.s. is overlapping. We introduce and establish the notion of "tops" of blowups. Our motives are not pure: we seek to show that a simple i.f.s. and an idea of Strichartz, can be used to create complicated tilings that may model natural structures. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2778779769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778779769</sourcerecordid><originalsourceid>FETCH-proquest_journals_27787797693</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdMrJLy8tKFZIzEtRCMkHMvLTFPzLUotyEgsKMvPSFTxLUosSS1JTFNxK85JLMvPzFIIri0tSc4t5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyNzcwtzc0tzM0pg4VQCHgTa5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778779769</pqid></control><display><type>article</type><title>Blowups and Tops of Overlapping Iterated Function Systems</title><source>Free E- Journals</source><creator>Barnsley, Louisa F ; Barnsley, Michael F</creator><creatorcontrib>Barnsley, Louisa F ; Barnsley, Michael F</creatorcontrib><description>We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and explain how they may be used to construct tilings of \(\mathbb{R}^{n}\) even in the case where the i.f.s. is overlapping. We introduce and establish the notion of "tops" of blowups. Our motives are not pure: we seek to show that a simple i.f.s. and an idea of Strichartz, can be used to create complicated tilings that may model natural structures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fractals</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Barnsley, Louisa F</creatorcontrib><creatorcontrib>Barnsley, Michael F</creatorcontrib><title>Blowups and Tops of Overlapping Iterated Function Systems</title><title>arXiv.org</title><description>We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and explain how they may be used to construct tilings of \(\mathbb{R}^{n}\) even in the case where the i.f.s. is overlapping. We introduce and establish the notion of "tops" of blowups. Our motives are not pure: we seek to show that a simple i.f.s. and an idea of Strichartz, can be used to create complicated tilings that may model natural structures.</description><subject>Fractals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdMrJLy8tKFZIzEtRCMkHMvLTFPzLUotyEgsKMvPSFTxLUosSS1JTFNxK85JLMvPzFIIri0tSc4t5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyNzcwtzc0tzM0pg4VQCHgTa5</recordid><startdate>20230221</startdate><enddate>20230221</enddate><creator>Barnsley, Louisa F</creator><creator>Barnsley, Michael F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230221</creationdate><title>Blowups and Tops of Overlapping Iterated Function Systems</title><author>Barnsley, Louisa F ; Barnsley, Michael F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27787797693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fractals</topic><toplevel>online_resources</toplevel><creatorcontrib>Barnsley, Louisa F</creatorcontrib><creatorcontrib>Barnsley, Michael F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnsley, Louisa F</au><au>Barnsley, Michael F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Blowups and Tops of Overlapping Iterated Function Systems</atitle><jtitle>arXiv.org</jtitle><date>2023-02-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and explain how they may be used to construct tilings of \(\mathbb{R}^{n}\) even in the case where the i.f.s. is overlapping. We introduce and establish the notion of "tops" of blowups. Our motives are not pure: we seek to show that a simple i.f.s. and an idea of Strichartz, can be used to create complicated tilings that may model natural structures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2778779769 |
source | Free E- Journals |
subjects | Fractals |
title | Blowups and Tops of Overlapping Iterated Function Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Blowups%20and%20Tops%20of%20Overlapping%20Iterated%20Function%20Systems&rft.jtitle=arXiv.org&rft.au=Barnsley,%20Louisa%20F&rft.date=2023-02-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2778779769%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778779769&rft_id=info:pmid/&rfr_iscdi=true |