Blowups and Tops of Overlapping Iterated Function Systems

We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Barnsley, Louisa F, Barnsley, Michael F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and explain how they may be used to construct tilings of \(\mathbb{R}^{n}\) even in the case where the i.f.s. is overlapping. We introduce and establish the notion of "tops" of blowups. Our motives are not pure: we seek to show that a simple i.f.s. and an idea of Strichartz, can be used to create complicated tilings that may model natural structures.
ISSN:2331-8422