Blowups and Tops of Overlapping Iterated Function Systems
We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We review aspects of an important paper by Robert Strichartz concerning reverse iterated function systems (i.f.s.) and fractal blowups. We compare the invariant sets of reverse i.f.s. with those of more standard i.f.s. and with those of inverse i.f.s. We describe Strichartz' fractal blowups and explain how they may be used to construct tilings of \(\mathbb{R}^{n}\) even in the case where the i.f.s. is overlapping. We introduce and establish the notion of "tops" of blowups. Our motives are not pure: we seek to show that a simple i.f.s. and an idea of Strichartz, can be used to create complicated tilings that may model natural structures. |
---|---|
ISSN: | 2331-8422 |