ALGEBRAIC EXPANSIONS OF LOGICS

An algebraically expandable (AE) class is a class of algebraic structures axiomatizable by sentences of the form $\forall \exists ! \mathop{\boldsymbol {\bigwedge }}\limits p = q$ . For a logic L algebraized by a quasivariety $\mathcal {Q}$ we show that the AE-subclasses of $\mathcal {Q}$ correspond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2023-03, Vol.88 (1), p.74-92
Hauptverfasser: CAMPERCHOLI, MIGUEL, CASTAÑO, DIEGO NICOLÁS, DÍAZ VARELA, JOSÉ PATRICIO, GISPERT, JOAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An algebraically expandable (AE) class is a class of algebraic structures axiomatizable by sentences of the form $\forall \exists ! \mathop{\boldsymbol {\bigwedge }}\limits p = q$ . For a logic L algebraized by a quasivariety $\mathcal {Q}$ we show that the AE-subclasses of $\mathcal {Q}$ correspond to certain natural expansions of L, which we call algebraic expansions. These turn out to be a special case of the expansions by implicit connectives studied by X. Caicedo. We proceed to characterize all the AE-subclasses of abelian $\ell $ -groups and perfect MV-algebras, thus fully describing the algebraic expansions of their associated logics.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2022.47