Euler characteristics and their congruences for multisigned Selmer groups
The notion of the truncated Euler characteristic for Iwasawa modules is a generalization of the the usual Euler characteristic to the case when the Selmer groups are not finite. Let p be an odd prime, $E_{1}$ and $E_{2}$ be elliptic curves over a number field F with semistable reduction at all prime...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2023-02, Vol.75 (1), p.298-321 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The notion of the truncated Euler characteristic for Iwasawa modules is a generalization of the the usual Euler characteristic to the case when the Selmer groups are not finite. Let p be an odd prime,
$E_{1}$
and
$E_{2}$
be elliptic curves over a number field F with semistable reduction at all primes
$v|p$
such that the
$\operatorname {Gal}(\overline {F}/F)$
-modules
$E_{1}[p]$
and
$E_{2}[p]$
are irreducible and isomorphic. We compare the Iwasawa invariants of certain imprimitive multisigned Selmer groups of
$E_{1}$
and
$E_{2}$
. Leveraging these results, congruence relations for the truncated Euler characteristics associated to these Selmer groups over certain
$\mathbb {Z}_{p}^{m}$
-extensions of F are studied. Our results extend earlier congruence relations for elliptic curves over
$\mathbb {Q}$
with good ordinary reduction at p. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/S0008414X21000699 |