A presentation of the torus-equivariant quantum \(K\)-theory ring of flag manifolds of type \(A\), Part I: the defining ideal

We give a presentation of the torus-equivariant quantum \(K\)-theory ring of flag manifolds of type \(A\), as a quotient of a polynomial ring by an explicit ideal. This is the torus-equivariant version of our previous result, which gives a presentation of the non-equivariant quantum \(K\)-theory rin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Maeno, Toshiaki, Naito, Satoshi, Sagaki, Daisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a presentation of the torus-equivariant quantum \(K\)-theory ring of flag manifolds of type \(A\), as a quotient of a polynomial ring by an explicit ideal. This is the torus-equivariant version of our previous result, which gives a presentation of the non-equivariant quantum \(K\)-theory ring of flag manifolds of type \(A\). However, the method of proof for the torus-equivariant one is completely different from that for the non-equivariant one; our proof is based on the result in the \(Q = 0\) limit, and uses Nakayama-type arguments to upgrade it to the quantum situation. Also, in contrast to the non-equivariant case in which we used the Chevalley formula, we make use of the inverse Chevalley formula for the torus-equivariant \(K\)-group of semi-infinite flag manifolds to obtain a relation which yields our presentation.
ISSN:2331-8422