Duration discrimination: A diffusion decisionmodeling approach
The human ability to discriminate the duration of two subsequently presented stimuli is often studied with tasks that involve a comparison between a standard stimulus (with fixed duration) and comparison stimuli (with varying durations). The performance in such tasks is influenced by the presentatio...
Gespeichert in:
Veröffentlicht in: | Attention, perception & psychophysics perception & psychophysics, 2023-02, Vol.85 (2), p.560-577 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The human ability to discriminate the duration of two subsequently presented stimuli is often studied with tasks that involve a comparison between a standard stimulus (with fixed duration) and comparison stimuli (with varying durations). The performance in such tasks is influenced by the presentation order of these successively presented stimuli. The so-called Type A effect refers to the impact of presentation order on the point of subjective equality. The Type B effect describes effects of presentation order on the just-noticeable-difference. Cognitive models that account for these context effects assume that participants' duration estimation is influenced by the history of previously encountered stimuli. For example, the internal reference model assumes that the magnitude of a "typical" stimulus is represented by an internal reference. This internal reference evolves throughout an experiment and is updated on every trial. Different recent models have in common that they describe how the internal reference is computed but are agnostic to the decision process itself. In this study, we develop a new model that incorporates the mechanisms of perceptual discrimination models into a diffusion model. The diffusion model focuses on the dynamics of the decision process itself and accounts for choice and response times based on a set of latent cognitive variables. We show that our model accurately predicts the accuracy and response time distribution in a classical duration discrimination task. Further, model parameters were sensitive to the Type A and B effect. The proposed model opens up new opportunities for studying human discrimination performance (e.g., individual differences). |
---|---|
ISSN: | 1943-3921 1943-393X |
DOI: | 10.3758/s13414-022-02604-1 |