Equivariant Trees and Partition Complexes
We introduce two definitions of \(G\)-equivariant partitions of a finite \(G\)-set, both of which yield \(G\)-equivariant partition complexes. By considering suitable notions of equivariant trees, we show that \(G\)-equivariant partitions and \(G\)-trees are \(G\)-homotopy equivalent, generalizing e...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce two definitions of \(G\)-equivariant partitions of a finite \(G\)-set, both of which yield \(G\)-equivariant partition complexes. By considering suitable notions of equivariant trees, we show that \(G\)-equivariant partitions and \(G\)-trees are \(G\)-homotopy equivalent, generalizing existing results for the non-equivariant setting. Along the way, we develop equivariant versions of Quillen's Theorems A and B, which are of independent interest. |
---|---|
ISSN: | 2331-8422 |