Equivariant Trees and Partition Complexes

We introduce two definitions of \(G\)-equivariant partitions of a finite \(G\)-set, both of which yield \(G\)-equivariant partition complexes. By considering suitable notions of equivariant trees, we show that \(G\)-equivariant partitions and \(G\)-trees are \(G\)-homotopy equivalent, generalizing e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Bergner, Julia E, Bonventre, Peter, Calle, Maxine E, Chan, David, Sarazola, Maru
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce two definitions of \(G\)-equivariant partitions of a finite \(G\)-set, both of which yield \(G\)-equivariant partition complexes. By considering suitable notions of equivariant trees, we show that \(G\)-equivariant partitions and \(G\)-trees are \(G\)-homotopy equivalent, generalizing existing results for the non-equivariant setting. Along the way, we develop equivariant versions of Quillen's Theorems A and B, which are of independent interest.
ISSN:2331-8422