Tri-plane diagrams for simple surfaces in \(S^4\)
Meier and Zupan proved that an orientable surface \(\mathcal{K}\) in \(S^4\) admits a tri-plane diagram with zero crossings if and only if \(\mathcal{K}\) is unknotted, so that the crossing number of \(\mathcal{K}\) is zero. We determine the minimal crossing numbers of nonorientable unknotted surfac...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Meier and Zupan proved that an orientable surface \(\mathcal{K}\) in \(S^4\) admits a tri-plane diagram with zero crossings if and only if \(\mathcal{K}\) is unknotted, so that the crossing number of \(\mathcal{K}\) is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in \(S^4\), proving that \(c(\mathcal{P}^{n,m}) = \max\{1,|n-m|\}\), where \(\mathcal{P}^{n,m}\) denotes the connected sum of \(n\) unknotted projective planes with normal Euler number \(+2\) and \(m\) unknotted projective planes with normal Euler number \(-2\). In addition, we convert Yoshikawa's table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers. |
---|---|
ISSN: | 2331-8422 |