Edge-Disjoint Steiner Trees and Connectors in Graphs
Kriesell (J Comb Theory Ser B 88:53–65, 2003) proposed Conjecture 1: If S ⊆ V ( G ) is 2 k -edge-connected in a graph G , then G contains k edge-disjoint S -Steiner trees. West and Wu (J Comb Theory Ser B 102:186–205, 1961) posed Conjecture 2: If S ⊆ V ( G ) is 3 k -edge-connected in a graph G , t...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2023-04, Vol.39 (2), Article 23 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Kriesell (J Comb Theory Ser B 88:53–65, 2003) proposed Conjecture 1: If
S
⊆
V
(
G
)
is 2
k
-edge-connected in a graph
G
, then
G
contains
k
edge-disjoint
S
-Steiner trees. West and Wu (J Comb Theory Ser B 102:186–205, 1961) posed Conjecture 2: If
S
⊆
V
(
G
)
is 3
k
-edge-connected in a graph
G
, then
G
contains
k
edge-disjoint
S
-connectors, which is an analogue for
S
-connectors of Kriesell’s Conjecture. This paper shows If
|
V
(
G
)
-
S
|
≤
k
,
then Conjecture 1 is true and if
|
V
(
G
)
-
S
|
≤
2
k
,
then Conjecture 2 is true. This paper also investigate the validity of two conjectures with certain additional conditions of
|
V
(
G
)
-
S
|
or |
S
|. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-023-02621-3 |