Edge-Disjoint Steiner Trees and Connectors in Graphs

Kriesell (J Comb Theory Ser B 88:53–65, 2003) proposed Conjecture 1: If S ⊆ V ( G ) is 2 k -edge-connected in a graph G ,  then G contains k edge-disjoint S -Steiner trees. West and Wu (J Comb Theory Ser B 102:186–205, 1961) posed Conjecture 2: If S ⊆ V ( G ) is 3 k -edge-connected in a graph G ,  t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2023-04, Vol.39 (2), Article 23
Hauptverfasser: Li, Hengzhe, Liu, Huayue, Liu, Jianbing, Mao, Yaping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kriesell (J Comb Theory Ser B 88:53–65, 2003) proposed Conjecture 1: If S ⊆ V ( G ) is 2 k -edge-connected in a graph G ,  then G contains k edge-disjoint S -Steiner trees. West and Wu (J Comb Theory Ser B 102:186–205, 1961) posed Conjecture 2: If S ⊆ V ( G ) is 3 k -edge-connected in a graph G ,  then G contains k edge-disjoint S -connectors, which is an analogue for S -connectors of Kriesell’s Conjecture. This paper shows If | V ( G ) - S | ≤ k , then Conjecture 1 is true and if | V ( G ) - S | ≤ 2 k , then Conjecture 2 is true. This paper also investigate the validity of two conjectures with certain additional conditions of | V ( G ) - S | or | S |.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-023-02621-3