On Best Error Bounds for Approximations by Algebraic Polynomials and Splines in the Spaces and

An analog of the well-known Jackson–Bernstein theory on best approximation by trigonometric polynomials is developed for approximation methods which use algebraic polynomials and piecewise polynomial functions on a finite interval. Approximation errors are measured in the norms of the Sobolev space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2022, Vol.43 (11), p.3091-3103
1. Verfasser: Dautov, R. Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3103
container_issue 11
container_start_page 3091
container_title Lobachevskii journal of mathematics
container_volume 43
creator Dautov, R. Z.
description An analog of the well-known Jackson–Bernstein theory on best approximation by trigonometric polynomials is developed for approximation methods which use algebraic polynomials and piecewise polynomial functions on a finite interval. Approximation errors are measured in the norms of the Sobolev space and Besov space . These results can be useful in error analysis of the spectral, -, and - finite element methods for solving differential equations.
doi_str_mv 10.1134/S1995080222140086
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2777431847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777431847</sourcerecordid><originalsourceid>FETCH-LOGICAL-p716-3ccdc14b921d8f064f5f69dc84ea0c60ea0af10f6cc726aab9f903d57d67a1ce3</originalsourceid><addsrcrecordid>eNplkMtKAzEUhoMoWKsP4C7gejTJpLks21KrUKjQrh0yudSUaTImLdi3N7WCCzfn_If_49wAuMfoEeOaPq2wlCMkECEEU4QEuwADLLCopGTksuhiVyf_GtzkvEUFZIwNwPsywInNezhLKSY4iYdgMnRFjvs-xS-_U3sfQ4btEY67jW2T8hq-xe4Y4s6rLkMVDFz1nQ82Qx_g_sOWUmn749yCK1cge_ebh2D9PFtPX6rFcv46HS-qnmNW1VobjWkrCTbCIUbdyDFptKBWIc1Qicph5JjWnDClWukkqs2IG8YV1rYegodz27Ly56Gc02zjIYUysSGcc1pjQXmhyJnKffJhY9MfhVFzemPz7431N0BXZZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777431847</pqid></control><display><type>article</type><title>On Best Error Bounds for Approximations by Algebraic Polynomials and Splines in the Spaces and</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dautov, R. Z.</creator><creatorcontrib>Dautov, R. Z.</creatorcontrib><description>An analog of the well-known Jackson–Bernstein theory on best approximation by trigonometric polynomials is developed for approximation methods which use algebraic polynomials and piecewise polynomial functions on a finite interval. Approximation errors are measured in the norms of the Sobolev space and Besov space . These results can be useful in error analysis of the spectral, -, and - finite element methods for solving differential equations.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080222140086</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Approximation ; Differential equations ; Error analysis ; Finite element method ; Function space ; Geometry ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Norms ; Polynomials ; Probability Theory and Stochastic Processes ; Sobolev space ; Spline functions</subject><ispartof>Lobachevskii journal of mathematics, 2022, Vol.43 (11), p.3091-3103</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080222140086$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080222140086$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Dautov, R. Z.</creatorcontrib><title>On Best Error Bounds for Approximations by Algebraic Polynomials and Splines in the Spaces and</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>An analog of the well-known Jackson–Bernstein theory on best approximation by trigonometric polynomials is developed for approximation methods which use algebraic polynomials and piecewise polynomial functions on a finite interval. Approximation errors are measured in the norms of the Sobolev space and Besov space . These results can be useful in error analysis of the spectral, -, and - finite element methods for solving differential equations.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Differential equations</subject><subject>Error analysis</subject><subject>Finite element method</subject><subject>Function space</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Polynomials</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Sobolev space</subject><subject>Spline functions</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkMtKAzEUhoMoWKsP4C7gejTJpLks21KrUKjQrh0yudSUaTImLdi3N7WCCzfn_If_49wAuMfoEeOaPq2wlCMkECEEU4QEuwADLLCopGTksuhiVyf_GtzkvEUFZIwNwPsywInNezhLKSY4iYdgMnRFjvs-xS-_U3sfQ4btEY67jW2T8hq-xe4Y4s6rLkMVDFz1nQ82Qx_g_sOWUmn749yCK1cge_ebh2D9PFtPX6rFcv46HS-qnmNW1VobjWkrCTbCIUbdyDFptKBWIc1Qicph5JjWnDClWukkqs2IG8YV1rYegodz27Ly56Gc02zjIYUysSGcc1pjQXmhyJnKffJhY9MfhVFzemPz7431N0BXZZE</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dautov, R. Z.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2022</creationdate><title>On Best Error Bounds for Approximations by Algebraic Polynomials and Splines in the Spaces and</title><author>Dautov, R. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p716-3ccdc14b921d8f064f5f69dc84ea0c60ea0af10f6cc726aab9f903d57d67a1ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Differential equations</topic><topic>Error analysis</topic><topic>Finite element method</topic><topic>Function space</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Polynomials</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Sobolev space</topic><topic>Spline functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dautov, R. Z.</creatorcontrib><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dautov, R. Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Best Error Bounds for Approximations by Algebraic Polynomials and Splines in the Spaces and</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2022</date><risdate>2022</risdate><volume>43</volume><issue>11</issue><spage>3091</spage><epage>3103</epage><pages>3091-3103</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>An analog of the well-known Jackson–Bernstein theory on best approximation by trigonometric polynomials is developed for approximation methods which use algebraic polynomials and piecewise polynomial functions on a finite interval. Approximation errors are measured in the norms of the Sobolev space and Besov space . These results can be useful in error analysis of the spectral, -, and - finite element methods for solving differential equations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080222140086</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2022, Vol.43 (11), p.3091-3103
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2777431847
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Approximation
Differential equations
Error analysis
Finite element method
Function space
Geometry
Mathematical analysis
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Norms
Polynomials
Probability Theory and Stochastic Processes
Sobolev space
Spline functions
title On Best Error Bounds for Approximations by Algebraic Polynomials and Splines in the Spaces and
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Best%20Error%20Bounds%20for%20Approximations%20by%20Algebraic%20Polynomials%20and%20Splines%20in%20the%20Spaces%20and&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Dautov,%20R.%20Z.&rft.date=2022&rft.volume=43&rft.issue=11&rft.spage=3091&rft.epage=3103&rft.pages=3091-3103&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080222140086&rft_dat=%3Cproquest_sprin%3E2777431847%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777431847&rft_id=info:pmid/&rfr_iscdi=true