On Best Error Bounds for Approximations by Algebraic Polynomials and Splines in the Spaces and
An analog of the well-known Jackson–Bernstein theory on best approximation by trigonometric polynomials is developed for approximation methods which use algebraic polynomials and piecewise polynomial functions on a finite interval. Approximation errors are measured in the norms of the Sobolev space...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2022, Vol.43 (11), p.3091-3103 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An analog of the well-known Jackson–Bernstein theory on best approximation by trigonometric polynomials is developed for approximation methods which use algebraic polynomials and piecewise polynomial functions on a finite interval. Approximation errors are measured in the norms of the Sobolev space
and Besov space
. These results can be useful in error analysis of the spectral,
-, and
- finite element methods for solving differential equations. |
---|---|
ISSN: | 1995-0802 1818-9962 |
DOI: | 10.1134/S1995080222140086 |