On Best Error Bounds for Approximations by Algebraic Polynomials and Splines in the Spaces and

An analog of the well-known Jackson–Bernstein theory on best approximation by trigonometric polynomials is developed for approximation methods which use algebraic polynomials and piecewise polynomial functions on a finite interval. Approximation errors are measured in the norms of the Sobolev space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2022, Vol.43 (11), p.3091-3103
1. Verfasser: Dautov, R. Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An analog of the well-known Jackson–Bernstein theory on best approximation by trigonometric polynomials is developed for approximation methods which use algebraic polynomials and piecewise polynomial functions on a finite interval. Approximation errors are measured in the norms of the Sobolev space and Besov space . These results can be useful in error analysis of the spectral, -, and - finite element methods for solving differential equations.
ISSN:1995-0802
1818-9962
DOI:10.1134/S1995080222140086