Sugarcane bagasse biochar affects corn (Zea mays L.) growth in cadmium and lead-contaminated calcareous clay soil
Various techniques are employed nowadays to lessen the harmful consequences of high soil concentrations of heavy metals (HMs). In this instance, a relatively novel technique to lessen the toxicity of HMs is the use of biochar. In this study, in order to investigate the effect of sugarcane bagasse bi...
Gespeichert in:
Veröffentlicht in: | Arabian journal of geosciences 2023-03, Vol.16 (3), Article 181 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Various techniques are employed nowadays to lessen the harmful consequences of high soil concentrations of heavy metals (HMs). In this instance, a relatively novel technique to lessen the toxicity of HMs is the use of biochar. In this study, in order to investigate the effect of sugarcane bagasse biochar on improving the growth of corn (
Zea mays
L.) in Cadmium (Cd) and lead (Pb) contaminated soil; a pot experiment was conducted in a randomized complete block design. The variables included planting maize, which was done in two independent experiments for Cd and Pb, three levels of Cd (0, 40, and 80 mg kg
-1
of soil from CdSO
4
.8H
2
O), three levels of Pb (0, 400, and 800 mg kg
-1
of soil from PbSO
4
), and two levels of sugarcane bagasse biochar (0 and 5% by weight). The results showed that increasing Cd and Pb treatments significantly increased the concentrations of these two elements in the maize shoots and roots and markedly decreased the dry weight of the shoots and roots by 35 to 45% and between 55 and 65%, respectively. A rise in Cd and Pb content was also accompanied by a notable decrease in the chlorophyll index, leaf area, plant height, and dry weight of roots and shoots. However, the use of sugarcane bagasse biochar increased the chlorophyll index, leaf area, plant height, and dry weight of the roots and shoots as a result of a considerable decrease in the concentration of Cd and Pb in the roots and shoots. In compared to the control, the translocation coefficient and bioconcentration factor reduced after the application of 5% sugarcane bagasse biochar. According to the findings, sugarcane bagasse biochar may stabilize and adsorb Pb and Cd from soil. It follows that adding sugarcane bagasse biochar to HM-contaminated soils is an appropriate remedial treatment that will promote plant development. |
---|---|
ISSN: | 1866-7511 1866-7538 |
DOI: | 10.1007/s12517-023-11225-3 |