NONLINEAR MODELING OF TRAPPING AND THERMAL EFFECTS ON GaAs AND GaN MESFET/HEMT DEVICES

A novel nonlinear model for MESFET/HEMT devices is presented. The model can be applied to low power (GaAs) and high power (GaN) devices with equal success. The model provides accurate simulation of the static (DC) and dynamic (Pulsed) I-V characteristics of the device over a wide bias and ambient te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electromagnetic waves (Cambridge, Mass.) Mass.), 2012-01, Vol.124, p.163-186
Hauptverfasser: Chaibi, M, Fernandez, T, Mimouni, A, Rodriguez-Tellez, J, Tazon, A, Mediavilla, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel nonlinear model for MESFET/HEMT devices is presented. The model can be applied to low power (GaAs) and high power (GaN) devices with equal success. The model provides accurate simulation of the static (DC) and dynamic (Pulsed) I-V characteristics of the device over a wide bias and ambient temperature range (from -70°C to +70°C) without the need of an additional electro- thermal sub-circuit. This is an important issue in high power GaN HEMT devices where self-heating and current collapse due to traps is a more serious problem. The parameter extraction strategy of the new model is simple to implement. The robustness of the model when performing harmonic balance simulation makes it suitable for RF and microwave designers. Experimental results presented demonstrate the accuracy of the model when simulating both the small-signal and large-signal behavior of the device over a wide range of frequency, bias and ambient temperature operating points. The model described has been implemented in the Advanced Design System (ADS) simulator to validate the proposed approach without convergence problems.
ISSN:1559-8985
1070-4698
1559-8985
DOI:10.2528/PIER11111102