B-CALM: AN OPEN-SOURCE MULTI-GPU-BASED 3D-FDTD WITH MULTI-POLE DISPERSION FOR PLASMONICS
Numerical calculations based on finite-difference time-domain (FDTD) simulations for metallic nanostructures in a broad optical spectrum require an accurate modeling of the permittivity of dispersive materials. In this paper, we present the algorithms behind B-CALM (Belgium-CAlifornia Light Machine)...
Gespeichert in:
Veröffentlicht in: | Electromagnetic waves (Cambridge, Mass.) Mass.), 2013-01, Vol.138, p.467-478 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerical calculations based on finite-difference time-domain (FDTD) simulations for metallic nanostructures in a broad optical spectrum require an accurate modeling of the permittivity of dispersive materials. In this paper, we present the algorithms behind B-CALM (Belgium-CAlifornia Light Machine), an open-source 3D-FDTD solver simultaneously operating on multiple Graphical Processing Units (GPUs) and efficiently utilizing multi-pole dispersion models while hiding latency in inter-GPU memory transfers. Our architecture shows a reduction in computing times for multi-pole dispersion models and an almost linear speed-up with respect to the amount of used GPUs. We benchmark B-CALM by computing the absorption efficiency of a metallic nanosphere in a broad spectral range with a six-pole Lorentz model and compare it with Mie theory and with a widely used Central Processing Unit (CPU)-based FDTD simulator. |
---|---|
ISSN: | 1559-8985 1070-4698 1559-8985 |
DOI: | 10.2528/PIER13030606 |