B-CALM: AN OPEN-SOURCE MULTI-GPU-BASED 3D-FDTD WITH MULTI-POLE DISPERSION FOR PLASMONICS

Numerical calculations based on finite-difference time-domain (FDTD) simulations for metallic nanostructures in a broad optical spectrum require an accurate modeling of the permittivity of dispersive materials. In this paper, we present the algorithms behind B-CALM (Belgium-CAlifornia Light Machine)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electromagnetic waves (Cambridge, Mass.) Mass.), 2013-01, Vol.138, p.467-478
Hauptverfasser: Wahl, Pierre, Ly-Gagnon, Dany-Sebastien, Debaes, Christof, Van Erps, Jurgen, Vermeulen, Nathalie, Miller, David A. B, Thienpont, Hugo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerical calculations based on finite-difference time-domain (FDTD) simulations for metallic nanostructures in a broad optical spectrum require an accurate modeling of the permittivity of dispersive materials. In this paper, we present the algorithms behind B-CALM (Belgium-CAlifornia Light Machine), an open-source 3D-FDTD solver simultaneously operating on multiple Graphical Processing Units (GPUs) and efficiently utilizing multi-pole dispersion models while hiding latency in inter-GPU memory transfers. Our architecture shows a reduction in computing times for multi-pole dispersion models and an almost linear speed-up with respect to the amount of used GPUs. We benchmark B-CALM by computing the absorption efficiency of a metallic nanosphere in a broad spectral range with a six-pole Lorentz model and compare it with Mie theory and with a widely used Central Processing Unit (CPU)-based FDTD simulator.
ISSN:1559-8985
1070-4698
1559-8985
DOI:10.2528/PIER13030606