Augmented Hessian equations on Riemannian manifolds: from integral to pointwise local second derivative estimates

We obtain a priori local pointwise second derivative estimates for solutions \(u\) to a class of augmented Hessian equations on Riemannian manifolds, in terms of the \(C^1\) norm and certain \(W^{2,p}\) norms of \(u\). We consider the case that no structural assumptions are imposed on either the aug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
1. Verfasser: Duncan, Jonah A J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain a priori local pointwise second derivative estimates for solutions \(u\) to a class of augmented Hessian equations on Riemannian manifolds, in terms of the \(C^1\) norm and certain \(W^{2,p}\) norms of \(u\). We consider the case that no structural assumptions are imposed on either the augmenting term or the right hand side of the equation, and the case where these terms are convex in the gradient variable. In the latter case, under an additional ellipticity condition we prove that the dependence on any \(W^{2,p}\) norm can be dropped. Our results are derived using integral estimates.
ISSN:2331-8422