Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy
Aim: The study’s aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component Anal...
Gespeichert in:
Veröffentlicht in: | CARDIOMETRY 2022-12 (25), p.942-948 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 948 |
---|---|
container_issue | 25 |
container_start_page | 942 |
container_title | CARDIOMETRY |
container_volume | |
creator | Kumar, P.V.S. Kumar, N.S. |
description | Aim: The study’s aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component Analysis (N=20) algorithm and Support Vector Machine (N=20) with a sample size of 40 for each group. The sample size calculation uses a pre-test power of 80%, a threshold of 0.05, and a confidence interval of 95%. Results: Performance of algorithms are measured using accuracy, sensitivity, and precision. Principal Component Analysis algorithm results in mean accuracy of 79.43% significantly different with P=0.488(p>0.05), a sensitivity of 79.29% with P=0.096 (p |
doi_str_mv | 10.18137/cardiometry.2022.25.942948 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2777086713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777086713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-cdacb4a2f23bad6b4f50427b2d0a0c0b8aedc8236edcf09fb3b41bdc119aae943</originalsourceid><addsrcrecordid>eNpNkdFqGzEQRZdCISHNPwjybFcarb275Mm4bWJIaSBJX8VopHUUvNJW0jr4x_J9VeqS5GUuwxzuZbhVdSH4XLRCNl8Jo3FhsDke5sAB5rCYdzV0dfupOgXJ61kDEk6q85SeOOcCRMfl4rR6WXncHZJLDL1hFIYRo0vBsz5ENkZrHGVX1tCzbw61zY7YbbRbjz6z5xLo2ZSc37KN92GP2e1tuTtPbsQdWxe_4G1B32N22xBdfhxY2NvI7qZxDDGz35ZySfyJ9Oi8Zas36rlMthnGWHDDVkRTRDp8qT73uEv2_L-eVQ8_vt-vr2c3v64269XNjEC0eUYGSdcIPUiNZqnrfsFraDQYjpy4btEaakEui_S867XUtdCGhOgQbVfLs-ri6Fvy_0w2ZfUUplh-SQqapuHtshGyUJdHimJIKdpejdENGA9KcPWvH_WhH_Xaj4KFOvYj_wIdlZCm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777086713</pqid></control><display><type>article</type><title>Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kumar, P.V.S. ; Kumar, N.S.</creator><creatorcontrib>Kumar, P.V.S. ; Kumar, N.S.</creatorcontrib><description>Aim: The study’s aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component Analysis (N=20) algorithm and Support Vector Machine (N=20) with a sample size of 40 for each group. The sample size calculation uses a pre-test power of 80%, a threshold of 0.05, and a confidence interval of 95%. Results: Performance of algorithms are measured using accuracy, sensitivity, and precision. Principal Component Analysis algorithm results in mean accuracy of 79.43% significantly different with P=0.488(p>0.05), a sensitivity of 79.29% with P=0.096 (p<0.05), and a precision of 83.57%. Support Vector Machine algorithm results in mean accuracy of 77.67%, a sensitivity of 76.67%, and a precision of 83.54%. Conclusion: Principal Component Analysis algorithm performed significantly better than the Support Vector Machine algorithm for Diabetic prediction.</description><identifier>EISSN: 2304-7232</identifier><identifier>DOI: 10.18137/cardiometry.2022.25.942948</identifier><language>eng</language><publisher>Moscow: Russian New University</publisher><subject>Accuracy ; Algorithms ; Diabetes ; Pregnancy ; Principal components analysis ; Support vector machines</subject><ispartof>CARDIOMETRY, 2022-12 (25), p.942-948</ispartof><rights>2022. This work is published under http://www.cardiometry.net/issues (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, P.V.S.</creatorcontrib><creatorcontrib>Kumar, N.S.</creatorcontrib><title>Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy</title><title>CARDIOMETRY</title><description>Aim: The study’s aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component Analysis (N=20) algorithm and Support Vector Machine (N=20) with a sample size of 40 for each group. The sample size calculation uses a pre-test power of 80%, a threshold of 0.05, and a confidence interval of 95%. Results: Performance of algorithms are measured using accuracy, sensitivity, and precision. Principal Component Analysis algorithm results in mean accuracy of 79.43% significantly different with P=0.488(p>0.05), a sensitivity of 79.29% with P=0.096 (p<0.05), and a precision of 83.57%. Support Vector Machine algorithm results in mean accuracy of 77.67%, a sensitivity of 76.67%, and a precision of 83.54%. Conclusion: Principal Component Analysis algorithm performed significantly better than the Support Vector Machine algorithm for Diabetic prediction.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Diabetes</subject><subject>Pregnancy</subject><subject>Principal components analysis</subject><subject>Support vector machines</subject><issn>2304-7232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkdFqGzEQRZdCISHNPwjybFcarb275Mm4bWJIaSBJX8VopHUUvNJW0jr4x_J9VeqS5GUuwxzuZbhVdSH4XLRCNl8Jo3FhsDke5sAB5rCYdzV0dfupOgXJ61kDEk6q85SeOOcCRMfl4rR6WXncHZJLDL1hFIYRo0vBsz5ENkZrHGVX1tCzbw61zY7YbbRbjz6z5xLo2ZSc37KN92GP2e1tuTtPbsQdWxe_4G1B32N22xBdfhxY2NvI7qZxDDGz35ZySfyJ9Oi8Zas36rlMthnGWHDDVkRTRDp8qT73uEv2_L-eVQ8_vt-vr2c3v64269XNjEC0eUYGSdcIPUiNZqnrfsFraDQYjpy4btEaakEui_S867XUtdCGhOgQbVfLs-ri6Fvy_0w2ZfUUplh-SQqapuHtshGyUJdHimJIKdpejdENGA9KcPWvH_WhH_Xaj4KFOvYj_wIdlZCm</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Kumar, P.V.S.</creator><creator>Kumar, N.S.</creator><general>Russian New University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20221201</creationdate><title>Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy</title><author>Kumar, P.V.S. ; Kumar, N.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-cdacb4a2f23bad6b4f50427b2d0a0c0b8aedc8236edcf09fb3b41bdc119aae943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Diabetes</topic><topic>Pregnancy</topic><topic>Principal components analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, P.V.S.</creatorcontrib><creatorcontrib>Kumar, N.S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>CARDIOMETRY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, P.V.S.</au><au>Kumar, N.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy</atitle><jtitle>CARDIOMETRY</jtitle><date>2022-12-01</date><risdate>2022</risdate><issue>25</issue><spage>942</spage><epage>948</epage><pages>942-948</pages><eissn>2304-7232</eissn><abstract>Aim: The study’s aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component Analysis (N=20) algorithm and Support Vector Machine (N=20) with a sample size of 40 for each group. The sample size calculation uses a pre-test power of 80%, a threshold of 0.05, and a confidence interval of 95%. Results: Performance of algorithms are measured using accuracy, sensitivity, and precision. Principal Component Analysis algorithm results in mean accuracy of 79.43% significantly different with P=0.488(p>0.05), a sensitivity of 79.29% with P=0.096 (p<0.05), and a precision of 83.57%. Support Vector Machine algorithm results in mean accuracy of 77.67%, a sensitivity of 76.67%, and a precision of 83.54%. Conclusion: Principal Component Analysis algorithm performed significantly better than the Support Vector Machine algorithm for Diabetic prediction.</abstract><cop>Moscow</cop><pub>Russian New University</pub><doi>10.18137/cardiometry.2022.25.942948</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2304-7232 |
ispartof | CARDIOMETRY, 2022-12 (25), p.942-948 |
issn | 2304-7232 |
language | eng |
recordid | cdi_proquest_journals_2777086713 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Diabetes Pregnancy Principal components analysis Support vector machines |
title | Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20comparison%20for%20prediction%20of%20Diabetic%20Pregnant%20women%20using%20Innovative%20Principal%20Component%20Analysis%20algorithm%20over%20Support%20Vector%20Machine%20Algorithm%20with%20Improved%20Accuracy&rft.jtitle=CARDIOMETRY&rft.au=Kumar,%20P.V.S.&rft.date=2022-12-01&rft.issue=25&rft.spage=942&rft.epage=948&rft.pages=942-948&rft.eissn=2304-7232&rft_id=info:doi/10.18137/cardiometry.2022.25.942948&rft_dat=%3Cproquest_cross%3E2777086713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777086713&rft_id=info:pmid/&rfr_iscdi=true |