Analysis and comparison for prediction of Diabetic Pregnant women using Innovative Principal Component Analysis algorithm over Support Vector Machine Algorithm with Improved Accuracy

Aim: The study’s aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component Anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CARDIOMETRY 2022-12 (25), p.942-948
Hauptverfasser: Kumar, P.V.S., Kumar, N.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim: The study’s aim is to analyze and compare the accuracy, sensitivity, and precision of diabetic prediction among pregnant women using the innovative Principal Component Analysis algorithm and Support Vector Analysis. Materials and Methods: This study involves two groups: Principal Component Analysis (N=20) algorithm and Support Vector Machine (N=20) with a sample size of 40 for each group. The sample size calculation uses a pre-test power of 80%, a threshold of 0.05, and a confidence interval of 95%. Results: Performance of algorithms are measured using accuracy, sensitivity, and precision. Principal Component Analysis algorithm results in mean accuracy of 79.43% significantly different with P=0.488(p>0.05), a sensitivity of 79.29% with P=0.096 (p
ISSN:2304-7232
DOI:10.18137/cardiometry.2022.25.942948