DIAmante TESS AutoRegressive Planet Search (DTARPS): III. Understanding the DTARPS Candidate Transiting Planet Catalogs
The DIAmante TESS AutoRegressive Planet Search (DTARPS) project, using novel statistical methods, has identified several hundred candidates for transiting planetary systems obtained from 0.9 million Full Frame Image light curves obtained in the TESS Year 1 southern hemisphere survey (Melton et al. 2...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The DIAmante TESS AutoRegressive Planet Search (DTARPS) project, using novel statistical methods, has identified several hundred candidates for transiting planetary systems obtained from 0.9 million Full Frame Image light curves obtained in the TESS Year 1 southern hemisphere survey (Melton et al. 2024a and 2024b). Several lines of evidence, including limited reconnaissance spectroscopy, indicate that at least half are true planets rather than False Positives. Here various population properties of these objects are examined. Half of the DTARPS candidates are hot Neptunes, populating the 'Neptune desert' found in Kepler planet samples. The DTARPS samples also identify dozens of Ultra Short Period planets with orbital periods down to 5 hours, high priority systems for atmospheric transimssion spectroscopy, and planets orbiting low-mass M stars. DTARPS methodology is sufficiently well-characterized at each step that preliminary planet occurrence rates can be estimated. Except for the increase in hot Neptunes, DTARPS planet occurrence rates are consistent with Kepler rates. Overall, DTARPS provides one of the largest and most reliable catalog of TESS exoplanet candidates that can be tapped to improve our understanding of various exoplanetary populations and astrophysical processes. |
---|---|
ISSN: | 2331-8422 |