Limit shape for regularisation of large partitions under the Plancherel measure

A celebrated result of Kerov-Vershik and Logan-Shepp gives an asymptotic shape for large partitions under the Plancherel measure. We prove that when we consider \(e\)-regularisations of such partitions we still have a convex limit shape, which is given by a shaking of the Kerov-Vershik-Logan-Shepp c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
1. Verfasser: Rostam, Salim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A celebrated result of Kerov-Vershik and Logan-Shepp gives an asymptotic shape for large partitions under the Plancherel measure. We prove that when we consider \(e\)-regularisations of such partitions we still have a convex limit shape, which is given by a shaking of the Kerov-Vershik-Logan-Shepp curve. We deduce an explicit form for the first asymptotics of the length of the first rows and the first columns for the \(e\)-regularisation.
ISSN:2331-8422