Limit shape for regularisation of large partitions under the Plancherel measure
A celebrated result of Kerov-Vershik and Logan-Shepp gives an asymptotic shape for large partitions under the Plancherel measure. We prove that when we consider \(e\)-regularisations of such partitions we still have a convex limit shape, which is given by a shaking of the Kerov-Vershik-Logan-Shepp c...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A celebrated result of Kerov-Vershik and Logan-Shepp gives an asymptotic shape for large partitions under the Plancherel measure. We prove that when we consider \(e\)-regularisations of such partitions we still have a convex limit shape, which is given by a shaking of the Kerov-Vershik-Logan-Shepp curve. We deduce an explicit form for the first asymptotics of the length of the first rows and the first columns for the \(e\)-regularisation. |
---|---|
ISSN: | 2331-8422 |