Volume-Based Concrete Mixture Design
Concrete mixture design is the foundation of cement and concrete research. Innovations in concrete materials could, should, and would inevitably be incorporated into new mixture designs. Thus, a rigorous method for concrete mixture design can better bridge the research community and the construction...
Gespeichert in:
Veröffentlicht in: | ACI materials journal 2023-01, Vol.120 (1), p.243-255 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Concrete mixture design is the foundation of cement and concrete research. Innovations in concrete materials could, should, and would inevitably be incorporated into new mixture designs. Thus, a rigorous method for concrete mixture design can better bridge the research community and the construction industry with high reliability and high fidelity. However, current methods for concrete mixture design vary a lot in the literature, thus compromising the accuracy and consistency in interpreting the properties of concrete subject to changes in its raw ingredients. Moreover, the extraneous variables in controlled experiments are not always controlled well. To solve this old but critical problem, this paper summarizes the prevalent concrete mixture design methods in the literature and in practice. By contrast, the volume-based mixture design method is superior to the mass ratio-based mixture design method in terms of simplicity, accuracy, and consistency. Further discussion on packing density measurement and water or slurry film thickness (SFT) as a basis of volume-based mixture design is elaborated. Mathematically, the hardened properties were linked to the particle packing behavior and fresh properties of concrete. This research contributes to a unified volume-based design method to bridge the research community and the construction industry. In the end, it is conducive to upgrading from concrete technology to science. Keywords: slurry film thickness; strength; volume-based design; wet packing density. |
---|---|
ISSN: | 0889-325X 1944-737X |
DOI: | 10.14359/51737295 |