A Geospatial Bounded Confidence Model Including Mega-Influencers with an Application to Covid-19 Vaccine Hesitancy
We introduce a geospatial bounded confidence model with mega-influencers, inspired by Hegselmann and Krause (2002). The inclusion of geography gives rise to large-scale geospatial patterns evolving out of random initial data; that is, spatial clusters of like-minded agents emerge regardless of initi...
Gespeichert in:
Veröffentlicht in: | Journal of artificial societies and social simulation 2023-01, Vol.26 (1), p.1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a geospatial bounded confidence model with mega-influencers, inspired by Hegselmann and Krause (2002). The inclusion of geography gives rise to large-scale geospatial patterns evolving out of random initial data; that is, spatial clusters of like-minded agents emerge regardless of initialization. Mega-influencers and stochasticity amplify this effect, and soften local consensus. As an application, we consider national views on Covid-19 vaccines. For a certain set of parameters, our model yields results comparable to real survey results on vaccine hesitancy from late 2020. |
---|---|
ISSN: | 1460-7425 1460-7425 |
DOI: | 10.18564/jasss.5027 |