A Geospatial Bounded Confidence Model Including Mega-Influencers with an Application to Covid-19 Vaccine Hesitancy

We introduce a geospatial bounded confidence model with mega-influencers, inspired by Hegselmann and Krause (2002). The inclusion of geography gives rise to large-scale geospatial patterns evolving out of random initial data; that is, spatial clusters of like-minded agents emerge regardless of initi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of artificial societies and social simulation 2023-01, Vol.26 (1), p.1
Hauptverfasser: Haensch, Anna, Dragovic, Natasa, Borgers, Christoph, Boghosian, Bruce
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a geospatial bounded confidence model with mega-influencers, inspired by Hegselmann and Krause (2002). The inclusion of geography gives rise to large-scale geospatial patterns evolving out of random initial data; that is, spatial clusters of like-minded agents emerge regardless of initialization. Mega-influencers and stochasticity amplify this effect, and soften local consensus. As an application, we consider national views on Covid-19 vaccines. For a certain set of parameters, our model yields results comparable to real survey results on vaccine hesitancy from late 2020.
ISSN:1460-7425
1460-7425
DOI:10.18564/jasss.5027