Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method

Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2023-03, Vol.69 (3), p.n/a
Hauptverfasser: Huang, Fei, Motealleh, Behrooz, Wang, Donghui, Cornelius, Chris J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title AIChE journal
container_volume 69
creator Huang, Fei
Motealleh, Behrooz
Wang, Donghui
Cornelius, Chris J.
description Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibited about 30° decrease in apparent contact angle from 30 to 10°C due to the condensation of water vapor into cavities, suggesting a significant Cassie–Wenzel wetting transition phenomenon. The focus of this work has been on the first‐time use of a low‐T Cassie–Wenzel wetting transition method to evaluate Young's (ideal) contact angle and surface free energy. A maximum Young's contact angle (113°) and minimum total surface energy (12 mJ/m2) were determined at Nafion content of 70 wt%, indicating the orientation effect that sulfonate groups in Nafion preferentially pointed toward polar carbon. This approach provided the reasonable prediction of intrinsic hydrophobicity, especially when a rough solid surface is not easily wetted by liquids.
doi_str_mv 10.1002/aic.17908
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775893253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775893253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-5004bac6da8bb46bb90a3b013fdff0a037e5d527f68d501a88727ec961e95e073</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYXvsGAKxdp70w6mWRZgj-FgpuKy2GSTJopaabOpJaIiz6C4Bv2SZwacefqcC_fOQcOQtcERgSAjqXOR4QnEJ-gAWETHrAE2CkaAAAJ_IOcowvnVv6iPKYD9LGQujZWN0usm9ar0zmuusKaTWUyneu2w7IpsNvaUuYKq0bZZYdNg63ZLqu__5uWuDa7w_5zgVPpnFaH_deLat5VjXeqbY8FrZU-vtXevFZtZYpLdFbK2qmrXx2i5_u7RfoYzJ8eZul0HuQ04XHAACaZzKNCxlk2ibIsARlmQMKyKEuQEHLFCkZ5GcUFAyLjmFOu8iQiKmEKeDhEN33uxprXrXKtWJmtbXyloJyzOAkpCz1121O5Nc5ZVYqN1WtpO0FAHMcVflzxM65nxz2707Xq_gfFdJb2jm8trH-d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775893253</pqid></control><display><type>article</type><title>Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method</title><source>Access via Wiley Online Library</source><creator>Huang, Fei ; Motealleh, Behrooz ; Wang, Donghui ; Cornelius, Chris J.</creator><creatorcontrib>Huang, Fei ; Motealleh, Behrooz ; Wang, Donghui ; Cornelius, Chris J.</creatorcontrib><description>Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibited about 30° decrease in apparent contact angle from 30 to 10°C due to the condensation of water vapor into cavities, suggesting a significant Cassie–Wenzel wetting transition phenomenon. The focus of this work has been on the first‐time use of a low‐T Cassie–Wenzel wetting transition method to evaluate Young's (ideal) contact angle and surface free energy. A maximum Young's contact angle (113°) and minimum total surface energy (12 mJ/m2) were determined at Nafion content of 70 wt%, indicating the orientation effect that sulfonate groups in Nafion preferentially pointed toward polar carbon. This approach provided the reasonable prediction of intrinsic hydrophobicity, especially when a rough solid surface is not easily wetted by liquids.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.17908</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Carbon ; Cassie–Wenzel wetting transition ; Composite materials ; Contact angle ; Free energy ; Hydrophobicity ; intrinsic hydrophobicity ; Orientation effects ; Solid surfaces ; Surface energy ; surface free energy ; Surface properties ; Surface roughness ; theoretical models ; Water vapor ; Wettability ; Wetting</subject><ispartof>AIChE journal, 2023-03, Vol.69 (3), p.n/a</ispartof><rights>2022 American Institute of Chemical Engineers.</rights><rights>2023 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-5004bac6da8bb46bb90a3b013fdff0a037e5d527f68d501a88727ec961e95e073</citedby><cites>FETCH-LOGICAL-c2978-5004bac6da8bb46bb90a3b013fdff0a037e5d527f68d501a88727ec961e95e073</cites><orcidid>0000-0002-9313-9639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.17908$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.17908$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Motealleh, Behrooz</creatorcontrib><creatorcontrib>Wang, Donghui</creatorcontrib><creatorcontrib>Cornelius, Chris J.</creatorcontrib><title>Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method</title><title>AIChE journal</title><description>Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibited about 30° decrease in apparent contact angle from 30 to 10°C due to the condensation of water vapor into cavities, suggesting a significant Cassie–Wenzel wetting transition phenomenon. The focus of this work has been on the first‐time use of a low‐T Cassie–Wenzel wetting transition method to evaluate Young's (ideal) contact angle and surface free energy. A maximum Young's contact angle (113°) and minimum total surface energy (12 mJ/m2) were determined at Nafion content of 70 wt%, indicating the orientation effect that sulfonate groups in Nafion preferentially pointed toward polar carbon. This approach provided the reasonable prediction of intrinsic hydrophobicity, especially when a rough solid surface is not easily wetted by liquids.</description><subject>Carbon</subject><subject>Cassie–Wenzel wetting transition</subject><subject>Composite materials</subject><subject>Contact angle</subject><subject>Free energy</subject><subject>Hydrophobicity</subject><subject>intrinsic hydrophobicity</subject><subject>Orientation effects</subject><subject>Solid surfaces</subject><subject>Surface energy</subject><subject>surface free energy</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>theoretical models</subject><subject>Water vapor</subject><subject>Wettability</subject><subject>Wetting</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYXvsGAKxdp70w6mWRZgj-FgpuKy2GSTJopaabOpJaIiz6C4Bv2SZwacefqcC_fOQcOQtcERgSAjqXOR4QnEJ-gAWETHrAE2CkaAAAJ_IOcowvnVv6iPKYD9LGQujZWN0usm9ar0zmuusKaTWUyneu2w7IpsNvaUuYKq0bZZYdNg63ZLqu__5uWuDa7w_5zgVPpnFaH_deLat5VjXeqbY8FrZU-vtXevFZtZYpLdFbK2qmrXx2i5_u7RfoYzJ8eZul0HuQ04XHAACaZzKNCxlk2ibIsARlmQMKyKEuQEHLFCkZ5GcUFAyLjmFOu8iQiKmEKeDhEN33uxprXrXKtWJmtbXyloJyzOAkpCz1121O5Nc5ZVYqN1WtpO0FAHMcVflzxM65nxz2707Xq_gfFdJb2jm8trH-d</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Huang, Fei</creator><creator>Motealleh, Behrooz</creator><creator>Wang, Donghui</creator><creator>Cornelius, Chris J.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9313-9639</orcidid></search><sort><creationdate>202303</creationdate><title>Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method</title><author>Huang, Fei ; Motealleh, Behrooz ; Wang, Donghui ; Cornelius, Chris J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-5004bac6da8bb46bb90a3b013fdff0a037e5d527f68d501a88727ec961e95e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Cassie–Wenzel wetting transition</topic><topic>Composite materials</topic><topic>Contact angle</topic><topic>Free energy</topic><topic>Hydrophobicity</topic><topic>intrinsic hydrophobicity</topic><topic>Orientation effects</topic><topic>Solid surfaces</topic><topic>Surface energy</topic><topic>surface free energy</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>theoretical models</topic><topic>Water vapor</topic><topic>Wettability</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Motealleh, Behrooz</creatorcontrib><creatorcontrib>Wang, Donghui</creatorcontrib><creatorcontrib>Cornelius, Chris J.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Fei</au><au>Motealleh, Behrooz</au><au>Wang, Donghui</au><au>Cornelius, Chris J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method</atitle><jtitle>AIChE journal</jtitle><date>2023-03</date><risdate>2023</risdate><volume>69</volume><issue>3</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibited about 30° decrease in apparent contact angle from 30 to 10°C due to the condensation of water vapor into cavities, suggesting a significant Cassie–Wenzel wetting transition phenomenon. The focus of this work has been on the first‐time use of a low‐T Cassie–Wenzel wetting transition method to evaluate Young's (ideal) contact angle and surface free energy. A maximum Young's contact angle (113°) and minimum total surface energy (12 mJ/m2) were determined at Nafion content of 70 wt%, indicating the orientation effect that sulfonate groups in Nafion preferentially pointed toward polar carbon. This approach provided the reasonable prediction of intrinsic hydrophobicity, especially when a rough solid surface is not easily wetted by liquids.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.17908</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9313-9639</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2023-03, Vol.69 (3), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2775893253
source Access via Wiley Online Library
subjects Carbon
Cassie–Wenzel wetting transition
Composite materials
Contact angle
Free energy
Hydrophobicity
intrinsic hydrophobicity
Orientation effects
Solid surfaces
Surface energy
surface free energy
Surface properties
Surface roughness
theoretical models
Water vapor
Wettability
Wetting
title Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20intrinsic%20hydrophobicity%20and%20surface%20energy%20on%20rough%20surface%20via%20low%E2%80%90T%20Cassie%E2%80%93Wenzel%20wetting%20transition%20method&rft.jtitle=AIChE%20journal&rft.au=Huang,%20Fei&rft.date=2023-03&rft.volume=69&rft.issue=3&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.17908&rft_dat=%3Cproquest_cross%3E2775893253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775893253&rft_id=info:pmid/&rfr_iscdi=true