Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method
Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibite...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2023-03, Vol.69 (3), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | AIChE journal |
container_volume | 69 |
creator | Huang, Fei Motealleh, Behrooz Wang, Donghui Cornelius, Chris J. |
description | Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibited about 30° decrease in apparent contact angle from 30 to 10°C due to the condensation of water vapor into cavities, suggesting a significant Cassie–Wenzel wetting transition phenomenon. The focus of this work has been on the first‐time use of a low‐T Cassie–Wenzel wetting transition method to evaluate Young's (ideal) contact angle and surface free energy. A maximum Young's contact angle (113°) and minimum total surface energy (12 mJ/m2) were determined at Nafion content of 70 wt%, indicating the orientation effect that sulfonate groups in Nafion preferentially pointed toward polar carbon. This approach provided the reasonable prediction of intrinsic hydrophobicity, especially when a rough solid surface is not easily wetted by liquids. |
doi_str_mv | 10.1002/aic.17908 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2775893253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775893253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-5004bac6da8bb46bb90a3b013fdff0a037e5d527f68d501a88727ec961e95e073</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYXvsGAKxdp70w6mWRZgj-FgpuKy2GSTJopaabOpJaIiz6C4Bv2SZwacefqcC_fOQcOQtcERgSAjqXOR4QnEJ-gAWETHrAE2CkaAAAJ_IOcowvnVv6iPKYD9LGQujZWN0usm9ar0zmuusKaTWUyneu2w7IpsNvaUuYKq0bZZYdNg63ZLqu__5uWuDa7w_5zgVPpnFaH_deLat5VjXeqbY8FrZU-vtXevFZtZYpLdFbK2qmrXx2i5_u7RfoYzJ8eZul0HuQ04XHAACaZzKNCxlk2ibIsARlmQMKyKEuQEHLFCkZ5GcUFAyLjmFOu8iQiKmEKeDhEN33uxprXrXKtWJmtbXyloJyzOAkpCz1121O5Nc5ZVYqN1WtpO0FAHMcVflzxM65nxz2707Xq_gfFdJb2jm8trH-d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775893253</pqid></control><display><type>article</type><title>Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method</title><source>Access via Wiley Online Library</source><creator>Huang, Fei ; Motealleh, Behrooz ; Wang, Donghui ; Cornelius, Chris J.</creator><creatorcontrib>Huang, Fei ; Motealleh, Behrooz ; Wang, Donghui ; Cornelius, Chris J.</creatorcontrib><description>Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibited about 30° decrease in apparent contact angle from 30 to 10°C due to the condensation of water vapor into cavities, suggesting a significant Cassie–Wenzel wetting transition phenomenon. The focus of this work has been on the first‐time use of a low‐T Cassie–Wenzel wetting transition method to evaluate Young's (ideal) contact angle and surface free energy. A maximum Young's contact angle (113°) and minimum total surface energy (12 mJ/m2) were determined at Nafion content of 70 wt%, indicating the orientation effect that sulfonate groups in Nafion preferentially pointed toward polar carbon. This approach provided the reasonable prediction of intrinsic hydrophobicity, especially when a rough solid surface is not easily wetted by liquids.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.17908</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Carbon ; Cassie–Wenzel wetting transition ; Composite materials ; Contact angle ; Free energy ; Hydrophobicity ; intrinsic hydrophobicity ; Orientation effects ; Solid surfaces ; Surface energy ; surface free energy ; Surface properties ; Surface roughness ; theoretical models ; Water vapor ; Wettability ; Wetting</subject><ispartof>AIChE journal, 2023-03, Vol.69 (3), p.n/a</ispartof><rights>2022 American Institute of Chemical Engineers.</rights><rights>2023 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-5004bac6da8bb46bb90a3b013fdff0a037e5d527f68d501a88727ec961e95e073</citedby><cites>FETCH-LOGICAL-c2978-5004bac6da8bb46bb90a3b013fdff0a037e5d527f68d501a88727ec961e95e073</cites><orcidid>0000-0002-9313-9639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.17908$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.17908$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Motealleh, Behrooz</creatorcontrib><creatorcontrib>Wang, Donghui</creatorcontrib><creatorcontrib>Cornelius, Chris J.</creatorcontrib><title>Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method</title><title>AIChE journal</title><description>Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibited about 30° decrease in apparent contact angle from 30 to 10°C due to the condensation of water vapor into cavities, suggesting a significant Cassie–Wenzel wetting transition phenomenon. The focus of this work has been on the first‐time use of a low‐T Cassie–Wenzel wetting transition method to evaluate Young's (ideal) contact angle and surface free energy. A maximum Young's contact angle (113°) and minimum total surface energy (12 mJ/m2) were determined at Nafion content of 70 wt%, indicating the orientation effect that sulfonate groups in Nafion preferentially pointed toward polar carbon. This approach provided the reasonable prediction of intrinsic hydrophobicity, especially when a rough solid surface is not easily wetted by liquids.</description><subject>Carbon</subject><subject>Cassie–Wenzel wetting transition</subject><subject>Composite materials</subject><subject>Contact angle</subject><subject>Free energy</subject><subject>Hydrophobicity</subject><subject>intrinsic hydrophobicity</subject><subject>Orientation effects</subject><subject>Solid surfaces</subject><subject>Surface energy</subject><subject>surface free energy</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>theoretical models</subject><subject>Water vapor</subject><subject>Wettability</subject><subject>Wetting</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYXvsGAKxdp70w6mWRZgj-FgpuKy2GSTJopaabOpJaIiz6C4Bv2SZwacefqcC_fOQcOQtcERgSAjqXOR4QnEJ-gAWETHrAE2CkaAAAJ_IOcowvnVv6iPKYD9LGQujZWN0usm9ar0zmuusKaTWUyneu2w7IpsNvaUuYKq0bZZYdNg63ZLqu__5uWuDa7w_5zgVPpnFaH_deLat5VjXeqbY8FrZU-vtXevFZtZYpLdFbK2qmrXx2i5_u7RfoYzJ8eZul0HuQ04XHAACaZzKNCxlk2ibIsARlmQMKyKEuQEHLFCkZ5GcUFAyLjmFOu8iQiKmEKeDhEN33uxprXrXKtWJmtbXyloJyzOAkpCz1121O5Nc5ZVYqN1WtpO0FAHMcVflzxM65nxz2707Xq_gfFdJb2jm8trH-d</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Huang, Fei</creator><creator>Motealleh, Behrooz</creator><creator>Wang, Donghui</creator><creator>Cornelius, Chris J.</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9313-9639</orcidid></search><sort><creationdate>202303</creationdate><title>Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method</title><author>Huang, Fei ; Motealleh, Behrooz ; Wang, Donghui ; Cornelius, Chris J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-5004bac6da8bb46bb90a3b013fdff0a037e5d527f68d501a88727ec961e95e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Cassie–Wenzel wetting transition</topic><topic>Composite materials</topic><topic>Contact angle</topic><topic>Free energy</topic><topic>Hydrophobicity</topic><topic>intrinsic hydrophobicity</topic><topic>Orientation effects</topic><topic>Solid surfaces</topic><topic>Surface energy</topic><topic>surface free energy</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>theoretical models</topic><topic>Water vapor</topic><topic>Wettability</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Motealleh, Behrooz</creatorcontrib><creatorcontrib>Wang, Donghui</creatorcontrib><creatorcontrib>Cornelius, Chris J.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Fei</au><au>Motealleh, Behrooz</au><au>Wang, Donghui</au><au>Cornelius, Chris J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method</atitle><jtitle>AIChE journal</jtitle><date>2023-03</date><risdate>2023</risdate><volume>69</volume><issue>3</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Wettability is an important parameter of micro/nanostructured composites. The measurement of apparent contact angle is strongly affected by surface roughness, which induces some challenges to study the intrinsic hydrophobicity correlating to the nature of chemistry. Carbon‐Nafion composites exhibited about 30° decrease in apparent contact angle from 30 to 10°C due to the condensation of water vapor into cavities, suggesting a significant Cassie–Wenzel wetting transition phenomenon. The focus of this work has been on the first‐time use of a low‐T Cassie–Wenzel wetting transition method to evaluate Young's (ideal) contact angle and surface free energy. A maximum Young's contact angle (113°) and minimum total surface energy (12 mJ/m2) were determined at Nafion content of 70 wt%, indicating the orientation effect that sulfonate groups in Nafion preferentially pointed toward polar carbon. This approach provided the reasonable prediction of intrinsic hydrophobicity, especially when a rough solid surface is not easily wetted by liquids.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.17908</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9313-9639</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2023-03, Vol.69 (3), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2775893253 |
source | Access via Wiley Online Library |
subjects | Carbon Cassie–Wenzel wetting transition Composite materials Contact angle Free energy Hydrophobicity intrinsic hydrophobicity Orientation effects Solid surfaces Surface energy surface free energy Surface properties Surface roughness theoretical models Water vapor Wettability Wetting |
title | Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20intrinsic%20hydrophobicity%20and%20surface%20energy%20on%20rough%20surface%20via%20low%E2%80%90T%20Cassie%E2%80%93Wenzel%20wetting%20transition%20method&rft.jtitle=AIChE%20journal&rft.au=Huang,%20Fei&rft.date=2023-03&rft.volume=69&rft.issue=3&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.17908&rft_dat=%3Cproquest_cross%3E2775893253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775893253&rft_id=info:pmid/&rfr_iscdi=true |